Back to Search Start Over

Structural Characterization of Non-structural Protein 9 Complexed With Specific Nanobody Pinpoints Two Important Residues Involved in Porcine Reproductive and Respiratory Syndrome Virus Replication.

Authors :
Wang Y
Li R
Qiao S
Wang J
Liu H
Li Z
Ma H
Yang L
Ruan H
Weng M
Hiscox JA
Stewart JP
Nan Y
Zhang G
Zhou EM
Source :
Frontiers in microbiology [Front Microbiol] 2020 Nov 12; Vol. 11, pp. 581856. Date of Electronic Publication: 2020 Nov 12 (Print Publication: 2020).
Publication Year :
2020

Abstract

Porcine reproductive and respiratory syndrome (PRRS), caused by PRRS virus (PRRSV), is a widespread viral disease that has led to huge economic losses for the global swine industry. Non-structural protein 9 (Nsp9) of PRRSV possesses essential RNA-dependent RNA polymerase (RdRp) activity for viral RNA replication. Our previous report showed that Nsp9-specific nanobody, Nb6, was able to inhibit PRRSV replication. In this study, recombinant Nsp9 and Nsp9-Nb6 complex were prepared then characterized using bio-layer interferometry (BLI) and dynamic light scattering (DLS) analyses that demonstrated high-affinity binding of Nb6 to Nsp9 to form a homogeneous complex. Small-angle X-ray scattering (SAXS) characterization analyses revealed that spatial interactions differed between Nsp9 and Nsp9-Nb6 complex molecular envelopes. Enzyme-linked immunosorbent assays (ELISAs) revealed key involvement of Nsp9 residues Ile588, Asp590, and Leu643 and Nb6 residues Tyr62, Trp105, and Pro107 in the Nsp9-Nb6 interaction. After reverse genetics-based techniques were employed to generate recombinant Nsp9 mutant viruses, virus replication efficiencies were assessed in MARC-145 cells. The results revealed impaired viral replication of recombinant viruses bearing I588A and L643A mutations as compared with replication of wild type virus, as evidenced by reduced negative-strand genomic RNA [(-) gRNA] synthesis and attenuated viral infection. Moreover, the isoleucine at position 588 of Nsp9 was conserved across PRRSV genotypes. In conclusion, structural analysis of the Nsp9-Nb6 complex revealed novel amino acid interactions involved in viral RNA replication that will be useful for guiding development of structure-based anti-PRRSV agents.<br /> (Copyright © 2020 Wang, Li, Qiao, Wang, Liu, Li, Ma, Yang, Ruan, Weng, Hiscox, Stewart, Nan, Zhang and Zhou.)

Details

Language :
English
ISSN :
1664-302X
Volume :
11
Database :
MEDLINE
Journal :
Frontiers in microbiology
Publication Type :
Academic Journal
Accession number :
33281776
Full Text :
https://doi.org/10.3389/fmicb.2020.581856