Back to Search
Start Over
Fast automatic segmentation of thalamic nuclei from MP2RAGE acquisition at 7 Tesla.
- Source :
-
Magnetic resonance in medicine [Magn Reson Med] 2021 May; Vol. 85 (5), pp. 2781-2790. Date of Electronic Publication: 2020 Dec 03. - Publication Year :
- 2021
-
Abstract
- Purpose: Thalamic nuclei are largely invisible in conventional MRI due to poor contrast. Thalamus Optimized Multi-Atlas Segmentation (THOMAS) provides automatic segmentation of 12 thalamic nuclei using white-matter-nulled (WMn) Magnetization Prepared Rapid Gradient Echo (MPRAGE) sequence at 7T, but increases overall scan duration. Routinely acquired, bias-corrected Magnetization Prepared 2 Rapid Gradient Echo (MP2RAGE) sequence yields superior tissue contrast and quantitative T1 maps. Application of THOMAS to MP2RAGE has been investigated in this study.<br />Methods: Eight healthy volunteers and five pediatric-onset multiple sclerosis patients were recruited at Children's Hospital of Philadelphia and scanned at Siemens 7T with WMn-MPRAGE and multi-echo-MP2RAGE (ME-MP2RAGE) sequences. White-matter-nulled contrast was synthesized (MP2-SYN) from T <subscript>1</subscript> maps from ME-MP2RAGE sequence. Thalamic nuclei were segmented using THOMAS joint label fusion algorithm from WMn-MPRAGE and MP2-SYN datasets. THOMAS pipeline was modified to use majority voting to segment bias corrected T1-weighted uniform (MP2-UNI) images. Thalamic nuclei from MP2-SYN and MP2-UNI images were evaluated against corresponding nuclei obtained from WMn-MPRAGE images using dice coefficients, volume similarity indices (VSIs) and distance between centroids.<br />Results: For MP2-SYN, dice > 0.85 and VSI > 0.95 was achieved for five larger nuclei and dice > 0.6 and VSI > 0.7 was achieved for seven smaller nuclei. The dice and VSI were slightly higher, whereas the distance between centroids were smaller for MP2-SYN compared to MP2-UNI, indicating improved performance using the MP2-SYN image.<br />Conclusions: THOMAS algorithm can successfully segment thalamic nuclei in MP2RAGE images with essentially equivalent quality as WMn-MPRAGE, widening its applicability in studies focused on thalamic involvement in aging and disease.<br /> (© 2020 International Society for Magnetic Resonance in Medicine.)
Details
- Language :
- English
- ISSN :
- 1522-2594
- Volume :
- 85
- Issue :
- 5
- Database :
- MEDLINE
- Journal :
- Magnetic resonance in medicine
- Publication Type :
- Academic Journal
- Accession number :
- 33270943
- Full Text :
- https://doi.org/10.1002/mrm.28608