Back to Search Start Over

Design, Synthesis and Pharmacological Evaluation of Some C 3 Heterocyclic-Substituted Ciprofloxacin Derivatives as Chimeric Antitubercular Agents.

Authors :
Niveditha N
Begum M
Prathibha D
Sirisha K
Mahender P
Chitra C
Rao VR
Reddy VM
Achaiah G
Source :
Chemical & pharmaceutical bulletin [Chem Pharm Bull (Tokyo)] 2020; Vol. 68 (12), pp. 1170-1177.
Publication Year :
2020

Abstract

A series of new C <subscript>3</subscript> heterocyclic-substituted ciprofloxacin derivatives were prepared from ciprofloxacin acid hydrazide as possible chimeric molecules. They were evaluated for their possible in vitro antibacterial (agar cup/bore diffusion method) and antitubercular (Lowenstein-Jensen (LJ) slant method) activities. The results indicated that all the test compounds are highly effective against all the bacterial strains and have shown excellent anti-tubercular activity against normal, multidrug resistant and extensively drug resistant strains of Mycobacterium tuberculosis. They were found to be more potent antibacterial and antitubercular agents than the standard, ciprofloxacin. The minimum inhibitory concentration (MIC)'s of all the compounds against M. tuberculosis were found to be 0.0625 µg/mL as compared to ciprofloxacin (MIC = 2 to > 8 µg/mL). Molecular docking studies were performed by using AUTODOCK 4.2 on the new ciprofloxacin derivatives at the active site of crystal structure of fluoroquinolones target enzyme Mtb DNA gyrase GyrA N-terminal domain (PDB ID: 3ILW) and also on the active site of crystal structure of chosen heterocyclics target enzyme enoyl-acyl carrier protein (ACP) reductase enzyme (PDB ID: 4TZK). Interestingly, almost all the compounds have shown relatively greater binding affinity at both the active sites than ciprofloxacin. Compound 6 exhibited the highest affinity for 3ILW and 4TZK.

Details

Language :
English
ISSN :
1347-5223
Volume :
68
Issue :
12
Database :
MEDLINE
Journal :
Chemical & pharmaceutical bulletin
Publication Type :
Academic Journal
Accession number :
33268649
Full Text :
https://doi.org/10.1248/cpb.c20-00525