Back to Search Start Over

In Silico Discovery of Antimicrobial Peptides as an Alternative to Control SARS-CoV-2.

Authors :
Liscano Y
Oñate-Garzón J
Ocampo-Ibáñez ID
Source :
Molecules (Basel, Switzerland) [Molecules] 2020 Nov 25; Vol. 25 (23). Date of Electronic Publication: 2020 Nov 25.
Publication Year :
2020

Abstract

A serious pandemic has been caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The interaction between spike surface viral protein (Sgp) and the angiotensin-converting enzyme 2 (ACE2) cellular receptor is essential to understand the SARS-CoV-2 infectivity and pathogenicity. Currently, no drugs are available to treat the infection caused by this coronavirus and the use of antimicrobial peptides (AMPs) may be a promising alternative therapeutic strategy to control SARS-CoV-2. In this study, we investigated the in silico interaction of AMPs with viral structural proteins and host cell receptors. We screened the antimicrobial peptide database (APD3) and selected 15 peptides based on their physicochemical and antiviral properties. The interactions of AMPs with Sgp and ACE2 were performed by docking analysis. The results revealed that two amphibian AMPs, caerin 1.6 and caerin 1.10, had the highest affinity for Sgp proteins while interaction with the ACE2 receptor was reduced. The effective AMPs interacted particularly with Arg995 located in the S2 subunits of Sgp, which is key subunit that plays an essential role in viral fusion and entry into the host cell through ACE2. Given these computational findings, new potentially effective AMPs with antiviral properties for SARS-CoV-2 were identified, but they need experimental validation for their therapeutic effectiveness.

Details

Language :
English
ISSN :
1420-3049
Volume :
25
Issue :
23
Database :
MEDLINE
Journal :
Molecules (Basel, Switzerland)
Publication Type :
Academic Journal
Accession number :
33255849
Full Text :
https://doi.org/10.3390/molecules25235535