Back to Search
Start Over
The eIF4E homolog 4EHP (eIF4E2) regulates hippocampal long-term depression and impacts social behavior.
- Source :
-
Molecular autism [Mol Autism] 2020 Nov 23; Vol. 11 (1), pp. 92. Date of Electronic Publication: 2020 Nov 23. - Publication Year :
- 2020
-
Abstract
- Background: The regulation of protein synthesis is a critical step in gene expression, and its dysfunction is implicated in autism spectrum disorder (ASD). The eIF4E homologous protein (4EHP, also termed eIF4E2) binds to the mRNA 5' cap to repress translation. The stability of 4EHP is maintained through physical interaction with GRB10 interacting GYF protein 2 (GIGYF2). Gene-disruptive mutations in GIGYF2 are linked to ASD, but causality is lacking. We hypothesized that GIGYF2 mutations cause ASD by disrupting 4EHP function.<br />Methods: Since homozygous deletion of either gene is lethal, we generated a cell-type-specific knockout model where Eif4e2 (the gene encoding 4EHP) is deleted in excitatory neurons of the forebrain (4EHP-eKO). In this model, we investigated ASD-associated synaptic plasticity dysfunction, ASD-like behaviors, and global translational control. We also utilized mice lacking one copy of Gigyf2, Eif4e2 or co-deletion of one copy of each gene to further investigate ASD-like behaviors.<br />Results: 4EHP is expressed in excitatory neurons and synaptosomes, and its amount increases during development. 4EHP-eKO mice display exaggerated mGluR-LTD, a phenotype frequently observed in mouse models of ASD. Consistent with synaptic plasticity dysfunction, the mice displayed social behavior impairments without being confounded by deficits in olfaction, anxiety, locomotion, or motor ability. Repetitive behaviors and vocal communication were not affected by loss of 4EHP in excitatory neurons. Heterozygous deletion of either Gigyf2, Eif4e2, or both genes in mice did not result in ASD-like behaviors (i.e. decreases in social behavior or increases in marble burying). Interestingly, exaggerated mGluR-LTD and impaired social behaviors were not attributed to changes in hippocampal global protein synthesis, which suggests that 4EHP and GIGYF2 regulate the translation of specific mRNAs to mediate these effects.<br />Limitations: This study did not identify which genes are translationally regulated by 4EHP and GIGYF2. Identification of mistranslated genes in 4EHP-eKO mice might provide a mechanistic explanation for the observed impairment in social behavior and exaggerated LTD. Future experiments employing affinity purification of translating ribosomes and mRNA sequencing in 4EHP-eKO mice will address this relevant issue.<br />Conclusions: Together these results demonstrate an important role of 4EHP in regulating hippocampal plasticity and ASD-associated social behaviors, consistent with the link between mutations in GIGYF2 and ASD.
- Subjects :
- Animals
Anxiety physiopathology
Autism Spectrum Disorder genetics
Behavior, Animal
Carrier Proteins genetics
Heterozygote
Hippocampus pathology
Male
Mice, Inbred C57BL
Mice, Knockout
Models, Biological
Motor Activity
Mutation genetics
Neurons metabolism
RNA Caps metabolism
RNA, Messenger genetics
RNA, Messenger metabolism
Receptors, Metabotropic Glutamate metabolism
Smell
Social Interaction
Synaptosomes metabolism
Eukaryotic Initiation Factor-4E metabolism
Hippocampus physiopathology
Long-Term Synaptic Depression physiology
Social Behavior
Subjects
Details
- Language :
- English
- ISSN :
- 2040-2392
- Volume :
- 11
- Issue :
- 1
- Database :
- MEDLINE
- Journal :
- Molecular autism
- Publication Type :
- Academic Journal
- Accession number :
- 33225984
- Full Text :
- https://doi.org/10.1186/s13229-020-00394-7