Back to Search Start Over

A Novel Plate-Based System (UNIMAX) for Posterior Instrumented Spinal Fusion.

Authors :
Pisharodi M
Aljuboori Z
Goel VK
Nauta HJ
Source :
Cureus [Cureus] 2020 Oct 21; Vol. 12 (10), pp. e11080. Date of Electronic Publication: 2020 Oct 21.
Publication Year :
2020

Abstract

Introduction The polyaxial head pedicle screw-rod system is a commonly used spinal instrumentation technique to achieve stabilization, deformity correction, and bony fusion. We present a novel plate-based pedicle screw system (UNIMAX <superscript>TM</superscript> ) that can be used for multi-level instrumentation with potential advantages for selected applications. Methods Bilateral titanium monoaxial pedicle screws are linked at each level by robust transversely oriented cross plates forming ring constructs capable of rigid triangulation at each level. The cross plates are then interconnected by sagittally oriented rigid plates situated medial to the screw heads. Biomechanically, the construct was tested for quasi-static torsion and fatigue in axial compression. The system is approved by the Food and Drug Administration (FDA). The system and case examples are presented showing its potential advantages. Results The quasi-static torsion, the mean for the angular displacement, torsional stiffness, and torsional ultimate strength was 2.5 degrees (SD ± 0.8), 5.3 N-m/mm (SD ± 0.7), and 21.6 N-m (SD ± 4.4). For the fatigue in axial compression, the closed ring construct failed when the applied load and bending moment were ≥ 1500 N and ≥ 60 N.m. This system maximizes the construct rigidity, allows easy extension to adjacent levels, and can be incorporated intuitively into practice. The ring construct with triangulation at each level, together with its biomechanical robustness, predicts a high pullout resistance. It requires an open posterior approach incompatible with minimally invasive techniques. Conclusion This system may have advantages over the screw-rod systems in carefully selected situations requiring extra rigidity and high pull-out strength for complex reconstructions, sagittal and/or coronal correction, patients with poor bone quality, revisions, and/or extension to adjacent levels.<br />Competing Interests: Madhavan Pisharodi is the owner of the patent of the device described in this article<br /> (Copyright © 2020, Pisharodi et al.)

Details

Language :
English
ISSN :
2168-8184
Volume :
12
Issue :
10
Database :
MEDLINE
Journal :
Cureus
Publication Type :
Academic Journal
Accession number :
33224674
Full Text :
https://doi.org/10.7759/cureus.11080