Back to Search
Start Over
Insulin potentiates essential amino acids effects on mechanistic target of rapamycin complex 1 signaling in MAC-T cells.
- Source :
-
Journal of dairy science [J Dairy Sci] 2020 Dec; Vol. 103 (12), pp. 11988-12002. Date of Electronic Publication: 2020 Oct 23. - Publication Year :
- 2020
-
Abstract
- Different models of lactation offer conflicting evidence as to whether insulin signaling is required for AA to stimulate mechanistic target of rapamycin complex 1 (mTORC1) activity. We hypothesized that insulin potentiates essential AA stimulation of mTORC1 activity in the MAC-T mammary epithelial cell line. Here, our objective was to assess mTORC1 signaling activity in response to insulin and individual or grouped essential AA. Insulin and essential AA concentrations in the treatment medium ranged from normo- to supraphysiological, with insulin at 0, 1, 10, or 100 nmol/L and essential AA at approximately 0, 0.01, 0.05, 0.1, 1, or 3× reference plasma levels. Effects and interaction of insulin and total essential AA were tested in a 3 × 5 factorial design (n = 3 replicates/treatment); insulin and the individual AA Leu, Met, Ile, and Arg were likewise tested in 3 × 4 factorials (n = 4). As the remaining individual AA His, Lys, Phe, Thr, Trp, and Val were expected to not affect mTORC1, these were tested only at the highest insulin level, 100 nmol/L (n = 4). For all of these, linear and quadratic effects of total and individual AA were evaluated. Essential AA were subsequently grouped by their positive (Leu, Met, Ile, Arg, and Thr; TOR-AA) or absent-to-negative effects (His, Lys, Phe, Trp, and Val; NTOR-AA), and tested for interaction in a 2 × 2 factorial design (n = 4), with each AA at its respective 1× plasma level, and insulin held at 100 nmol/L. All experiments consisted of 1 h treatment incubation, followed by Western blotting of cell lysates to measure phosphorylation and abundance of the mTORC1 pathway proteins Akt (Ser473); ribosomal protein S6 kinase p70 (S6K1, Thr389); eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1, Ser65); and ribosomal protein S6 (S6, Ser240/244). The Akt phosphorylation was overall increased by insulin, with a possible negative interaction with both total essential AA and the individual AA Leu. Total essential AA also increased S6K1 and 4E-BP1 phosphorylation in an insulin-dependent manner. The individual AA Leu, Met, Ile, and Arg increased S6K1 phosphorylation in an insulin-dependent manner. Similarly, Met and Arg increased 4E-BP1 phosphorylation in an insulin-dependent manner. Histidine, Lys, Trp, and Val did not affect S6K1 phosphorylation. However, S6K1 phosphorylation was linearly increased by Thr and quadratically decreased by Phe. Relative to the phosphorylation of S6K1 when cells were incubated with no essential AA, the NTOR-AA group had no effect, whereas the TOR-AA increased phosphorylation to the same degree observed with all 10 essential AA. Overall, we have found that insulin is required for essential AA to stimulate mTORC1 activity in MAC-T cells. In addition, the AA responsible for the bulk of mTORC1 activation in MAC-T are limited to Leu, Met, Ile, Arg, and Thr.<br /> (Copyright © 2020 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.)
- Subjects :
- Animals
Cattle
Epithelial Cells metabolism
Female
Lactation
Mammary Glands, Animal cytology
Phosphorylation
Ribosomal Protein S6 metabolism
Ribosomal Protein S6 Kinases, 70-kDa metabolism
Amino Acids, Essential metabolism
Insulin metabolism
Mammary Glands, Animal metabolism
Mechanistic Target of Rapamycin Complex 1 metabolism
Signal Transduction
Subjects
Details
- Language :
- English
- ISSN :
- 1525-3198
- Volume :
- 103
- Issue :
- 12
- Database :
- MEDLINE
- Journal :
- Journal of dairy science
- Publication Type :
- Academic Journal
- Accession number :
- 33222863
- Full Text :
- https://doi.org/10.3168/jds.2020-18920