Back to Search Start Over

Decision-making in pediatric blunt solid organ injury: A deep learning approach to predict massive transfusion, need for operative management, and mortality risk.

Authors :
Shahi N
Shahi AK
Phillips R
Shirek G
Bensard D
Moulton SL
Source :
Journal of pediatric surgery [J Pediatr Surg] 2021 Feb; Vol. 56 (2), pp. 379-384. Date of Electronic Publication: 2020 Oct 24.
Publication Year :
2021

Abstract

Background: The principal triggers for intervention in the setting of pediatric blunt solid organ injury (BSOI) are declining hemoglobin values and hemodynamic instability. The clinical management of BSOI is, however, complex. We therefore hypothesized that state-of-art machine learning (computer-based) algorithms could be leveraged to discover new combinations of clinical variables that might herald the need for an escalation in care. We developed algorithms to predict the need for massive transfusion (MT), failure of non-operative management (NOM), mortality, and successful non-operative management without intervention, all within 4 hours of emergency department (ED) presentation.<br />Methods: Children (≤18 years) who sustained a BSOI (liver, spleen, and/or kidney) between 2009 and 2018 were identified in the trauma registry at a pediatric level 1 trauma center. Deep learning models were developed using clinical values [vital signs, shock index-pediatric adjusted (SIPA), organ injured, and blood products received], laboratory results [hemoglobin, base deficit, INR, lactate, thromboelastography (TEG)], and imaging findings [focused assessment with sonography in trauma (FAST) and grade of injury on computed tomography scan] from pre-hospital to ED settings for prediction of MT, failure of NOM, mortality, and successful NOM without intervention. Sensitivity, specificity, accuracy, and area under the receiver operating characteristic curve (AUC) were used to evaluate each model's performance.<br />Results: A total of 477 patients were included, of which 5.7% required MT (27/477), 7.2% failed NOM (34/477), 4.4% died (21/477), and 89.1% had successful NOM (425/477). The accuracy of the models in the validation set was as follows: MT (90.5%), failure of NOM (83.8%), mortality (91.9%), and successful NOM without intervention (90.3%). Serial vital signs, the grade of organ injury, hemoglobin, and positive FAST had low correlations with outcomes.<br />Conclusion: Deep learning-based models using a combination of clinical, laboratory and radiographic features can predict the need for emergent intervention (MT, angioembolization, or operative management) and mortality with high accuracy and sensitivity using data available in the first 4 hours of admission. Further research is needed to externally validate and determine the feasibility of prospectively applying this framework to improve care and outcomes.<br />Level of Evidence: III STUDY TYPE: Retrospective comparative study (Prognosis/Care Management).<br /> (Copyright © 2020 Elsevier Inc. All rights reserved.)

Details

Language :
English
ISSN :
1531-5037
Volume :
56
Issue :
2
Database :
MEDLINE
Journal :
Journal of pediatric surgery
Publication Type :
Academic Journal
Accession number :
33218680
Full Text :
https://doi.org/10.1016/j.jpedsurg.2020.10.021