Back to Search Start Over

Proton Transfer and S N 2 Reactions as Steps of Fast Selenol and Thiol Oxidation in Proteins: A Model Molecular Study Based on GPx.

Authors :
Dalla Tiezza M
Bickelhaupt FM
Flohé L
Orian L
Source :
ChemPlusChem [Chempluschem] 2021 Apr; Vol. 86 (4), pp. 525-532. Date of Electronic Publication: 2020 Nov 20.
Publication Year :
2021

Abstract

The so-called peroxidatic cysteines and selenocysteines in proteins reduce hydroperoxides through a dual attack to the peroxide bond in a two-step mechanism. First, a proton dislocation from the thiol/selenol to a close residue of the enzymatic pocket occurs. Then, a nucleophilic attack of the anionic cysteine/selenocysteine to one O atom takes place, while the proton is shuttled back to the second O atom, promoting the formation of a water molecule. In this computational study, we use a molecular model of GPx to demonstrate that the enzymatic environment significantly lowers the barrier of the latter S <subscript>N</subscript> 2 step. Particularly, in our Se-based model the energy barriers for the two steps are 29.82 and 2.83 kcal mol <superscript>-1</superscript> , both higher than the corresponding barriers computed in the enzymatic cluster, i. e., 21.60 and null, respectively. Our results, obtained at SMD-B3LYP-D3(BJ)/6-311+G(d,p), cc-pVTZ//B3LYP-D3(BJ)/6-311G(d,p), cc-pVTZ level of theory, show that the mechanistic details can be well reproduced using an oversimplified model, but the energetics is definitively more favorable in the GPx active site. In addition, we pinpoint the role of the chalcogen in the peroxide reduction process, rooting the advantages of the presence of selenium in its acidic and nucleophilic properties.<br /> (© 2020 Wiley-VCH GmbH.)

Details

Language :
English
ISSN :
2192-6506
Volume :
86
Issue :
4
Database :
MEDLINE
Journal :
ChemPlusChem
Publication Type :
Academic Journal
Accession number :
33215863
Full Text :
https://doi.org/10.1002/cplu.202000660