Back to Search
Start Over
EpOMEs act as immune suppressors in a lepidopteran insect, Spodoptera exigua.
- Source :
-
Scientific reports [Sci Rep] 2020 Nov 19; Vol. 10 (1), pp. 20183. Date of Electronic Publication: 2020 Nov 19. - Publication Year :
- 2020
-
Abstract
- Epoxyoctadecamonoenoic acids (EpOMEs) are epoxide derivatives of linoleic acid (9,12-octadecadienoic acid) and include 9,10-EpOME and 12,13-EpOME. They are synthesized by cytochrome P450 monooxygenases (CYPs) and degraded by soluble epoxide hydrolase (sEH). Although EpOMEs are well known to play crucial roles in mediating various physiological processes in mammals, their role is not well understood in insects. This study chemically identified their presence in insect tissues: 941.8 pg/g of 9,10-EpOME and 2,198.3 pg/g of 12,13-EpOME in fat body of a lepidopteran insect, Spodoptera exigua. Injection of 9,10-EpOME or 12,13-EpOME into larvae suppressed the cellular immune responses induced by bacterial challenge. EpOME treatment also suppressed the expression of antimicrobial peptide (AMP) genes. Among 139 S. exigua CYPs, an ortholog (SE51385) to human EpOME synthase was predicted and its expression was highly inducible upon bacterial challenge. RNA interference (RNAi) of SE51385 prevented down-regulation of immune responses at a late stage (> 24 h) following bacterial challenge. A soluble epoxide hydrolase (Se-sEH) of S. exigua was predicted and showed specific expression in all development stages and in different larval tissues. Furthermore, its expression levels were highly enhanced by bacterial challenge in different tissues. RNAi reduction of Se-sEH interfered with hemocyte-spreading behavior, nodule formation, and AMP expression. To support the immune association of EpOMEs, urea-based sEH inhibitors were screened to assess their inhibitory activities against cellular and humoral immune responses of S. exigua. 12-(3-adamantan-1-yl-ureido) dodecanoic acid (AUDA) was highly potent in suppressing the immune responses. The addition of AUDA to a pathogenic bacterium significantly increased bacterial pathogenicity by suppressing host immune defense. In sum, this study demonstrated that EpOMEs play a crucial role in facilitating anti-inflammatory responses in S. exigua.
- Subjects :
- Adamantane analogs & derivatives
Adamantane pharmacology
Animals
Dose-Response Relationship, Drug
Epoxy Compounds metabolism
Epoxy Compounds pharmacology
Fat Body metabolism
Gene Expression Regulation immunology
Hemocytes physiology
Immunity, Cellular drug effects
Immunity, Humoral drug effects
Immunosuppressive Agents immunology
Immunosuppressive Agents pharmacology
Insect Proteins immunology
Insect Proteins metabolism
Larva growth & development
Larva immunology
Lauric Acids pharmacology
Oleic Acids metabolism
Oleic Acids pharmacology
Spodoptera drug effects
Spodoptera genetics
Spodoptera metabolism
Epoxy Compounds immunology
Oleic Acids immunology
Spodoptera immunology
Subjects
Details
- Language :
- English
- ISSN :
- 2045-2322
- Volume :
- 10
- Issue :
- 1
- Database :
- MEDLINE
- Journal :
- Scientific reports
- Publication Type :
- Academic Journal
- Accession number :
- 33214688
- Full Text :
- https://doi.org/10.1038/s41598-020-77325-2