Back to Search
Start Over
Impairing activation of phospholipid synthesis by c-Fos interferes with glioblastoma cell proliferation.
- Source :
-
The Biochemical journal [Biochem J] 2020 Dec 11; Vol. 477 (23), pp. 4675-4688. - Publication Year :
- 2020
-
Abstract
- Glioblastoma multiforme is the most aggressive type of tumor of the CNS with an overall survival rate of approximately one year. Since this rate has not changed significantly over the last 20 years, the development of new therapeutic strategies for the treatment of these tumors is peremptory. The over-expression of the proto-oncogene c-Fos has been observed in several CNS tumors including glioblastoma multiforme and is usually associated with a poor prognosis. Besides its genomic activity as an AP-1 transcription factor, this protein can also activate phospholipid synthesis by a direct interaction with key enzymes of their metabolic pathways. Given that the amino-terminal portion of c-Fos (c-Fos-NA: amino acids 1-138) associates to but does not activate phospholipid synthesizing enzymes, we evaluated if c-Fos-NA or some shorter derivatives are capable of acting as dominant-negative peptides of the activating capacity of c-Fos. The over-expression or the exogenous administration of c-Fos-NA to cultured T98G cells hampers the interaction between c-Fos and PI4K2A, an enzyme activated by c-Fos. Moreover, it was observed a decrease in tumor cell proliferation rates in vitro and a reduction in tumor growth in vivo when a U87-MG-generated xenograft on nude mice is intratumorally treated with recombinant c-Fos-NA. Importantly, a smaller peptide of 92 amino acids derived from c-Fos-NA retains the capacity to interfere with tumor proliferation in vitro and in vivo. Taken together, these results support the use of the N-terminal portion of c-Fos, or shorter derivatives as a novel therapeutic strategy for the treatment of glioblastoma multiforme.<br /> (© 2020 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.)
- Subjects :
- Cell Line, Tumor
Enzyme Activation
Glioblastoma genetics
Glioblastoma pathology
Humans
Minor Histocompatibility Antigens genetics
Phospholipids genetics
Phosphotransferases (Alcohol Group Acceptor) genetics
Proto-Oncogene Mas
Proto-Oncogene Proteins c-fos genetics
Transcription Factor AP-1 genetics
Transcription Factor AP-1 metabolism
Cell Proliferation
Glioblastoma metabolism
Minor Histocompatibility Antigens metabolism
Phospholipids biosynthesis
Phosphotransferases (Alcohol Group Acceptor) metabolism
Proto-Oncogene Proteins c-fos metabolism
Subjects
Details
- Language :
- English
- ISSN :
- 1470-8728
- Volume :
- 477
- Issue :
- 23
- Database :
- MEDLINE
- Journal :
- The Biochemical journal
- Publication Type :
- Academic Journal
- Accession number :
- 33211090
- Full Text :
- https://doi.org/10.1042/BCJ20200465