Back to Search Start Over

Heart failure impairs the mechanotransduction properties of human cardiac pericytes.

Authors :
Rolle IG
Crivellari I
Zanello A
Mazzega E
Dalla E
Bulfoni M
Avolio E
Battistella A
Lazzarino M
Cellot A
Cervellin C
Sponga S
Livi U
Finato N
Sinagra G
Aleksova A
Cesselli D
Beltrami AP
Source :
Journal of molecular and cellular cardiology [J Mol Cell Cardiol] 2021 Feb; Vol. 151, pp. 15-30. Date of Electronic Publication: 2020 Nov 05.
Publication Year :
2021

Abstract

The prominent impact that coronary microcirculation disease (CMD) exerts on heart failure symptoms and prognosis, even in the presence of macrovascular atherosclerosis, has been recently acknowledged. Experimental delivery of pericytes in non-revascularized myocardial infarction improves cardiac function by stimulating angiogenesis and myocardial perfusion. Aim of this work is to verify if pericytes (Pc) residing in ischemic failing human hearts display altered mechano-transduction properties and to assess which alterations of the mechano-sensing machinery are associated with the observed impaired response to mechanical cues. RESULTS: Microvascular rarefaction and defects of YAP/TAZ activation characterize failing human hearts. Although both donor (D-) and explanted (E-) heart derived cardiac Pc support angiogenesis, D-Pc exert this effect significantly better than E-Pc. The latter are characterized by reduced focal adhesion density, decreased activation of the focal adhesion kinase (FAK)/ Crk-associated substrate (CAS) pathway, low expression of caveolin-1, and defective transduction of extracellular stiffness into cytoskeletal stiffening, together with an impaired response to both fibronectin and lysophosphatidic acid. Importantly, Mitogen-activated protein kinase kinase inhibition restores YAP/TAZ nuclear translocation. CONCLUSION: Heart failure impairs Pc mechano-transduction properties, but this defect could be reversed pharmacologically.<br /> (Copyright © 2020. Published by Elsevier Ltd.)

Details

Language :
English
ISSN :
1095-8584
Volume :
151
Database :
MEDLINE
Journal :
Journal of molecular and cellular cardiology
Publication Type :
Academic Journal
Accession number :
33159916
Full Text :
https://doi.org/10.1016/j.yjmcc.2020.10.016