Back to Search Start Over

Executive Control of Walking in People With Parkinson's Disease With Freezing of Gait.

Authors :
Vitorio R
Stuart S
Mancini M
Source :
Neurorehabilitation and neural repair [Neurorehabil Neural Repair] 2020 Dec; Vol. 34 (12), pp. 1138-1149. Date of Electronic Publication: 2020 Nov 06.
Publication Year :
2020

Abstract

Background: Walking abnormalities in people with Parkinson's disease (PD) are characterized by a shift in locomotor control from healthy automaticity to compensatory prefrontal executive control. Indirect measures of automaticity of walking (eg, step-to-step variability and dual-task cost) suggest that freezing of gait (FoG) may be associated with reduced automaticity of walking. However, the influence of FoG status on actual prefrontal cortex (PFC) activity during walking remains unclear.<br />Objective: To investigate the influence of FoG status on automaticity of walking in people with PD.<br />Methods: Forty-seven people with PD were distributed into 2 groups based on FoG status, which was assessed by the New Freezing of Gait Questionnaire: PD-FoG (n = 23; UPDRS-III = 35) and PD+FoG (n = 24; UPDRS-III = 43.1). Participants walked over a 9-m straight path (with a 180° turn at each end) for 80 seconds. Two conditions were tested off medication: single- and dual-task walking (ie, with a concomitant cognitive task). A portable functional near-infrared spectroscopy system recorded PFC activity while walking (including turns). Wearable inertial sensors were used to calculate spatiotemporal gait parameters.<br />Results: PD+FoG had greater PFC activation during both single and dual-task walking than PD-FoG ( P = .031). There were no differences in gait between PD-FoG and PD+FoG. Both groups decreased gait speed ( P = .029) and stride length ( P < .001) during dual-task walking compared with single-task walking.<br />Conclusions: These findings suggest that PD+FoG have reduced automaticity of walking, even in absence of FoG episodes. PFC activity while walking seems to be more sensitive than gait measures in identifying reduction in automaticity of walking in PD+FoG.

Details

Language :
English
ISSN :
1552-6844
Volume :
34
Issue :
12
Database :
MEDLINE
Journal :
Neurorehabilitation and neural repair
Publication Type :
Academic Journal
Accession number :
33155506
Full Text :
https://doi.org/10.1177/1545968320969940