Back to Search Start Over

A new technique for determining the refractive index of ices at cryogenic temperatures.

Authors :
Stubbing JW
McCoustra MRS
Brown WA
Source :
Physical chemistry chemical physics : PCCP [Phys Chem Chem Phys] 2020 Nov 21; Vol. 22 (43), pp. 25353-25365. Date of Electronic Publication: 2020 Nov 03.
Publication Year :
2020

Abstract

A reflection-absorption optical (RAO) spectrometer, operating across the ultra-violet/visible (UV/visible) wavelength region, has been developed that allows simultaneous measurements of optical properties and thickness of thin solid films at cryogenic temperatures in ultrahigh vacuum. The RAO spectrometer enables such measurements to be made after ice deposition, as opposed to most current approaches which make measurements during deposition. This allows changes in the optical properties and in the thickness of the film to be determined subsequent to thermal, photon or charged particle processing. This is not possible with current techniques. A data analysis method is presented that allows the wavelength dependent n and k values for ices to be extracted from the reflection-absorption spectra. The validity of this analysis method is shown using model data from the literature. New data are presented for the reflection UV/visible spectra of amorphous and crystalline single component ices of benzene, methyl formate and water adsorbed on a graphite surface. These data show that, for benzene and methyl formate, the crystalline ice has a larger refractive index than amorphous ice, reflecting changes in the electronic environment occurring in the ice during crystallisation. For water, the refractive index does not vary with ice phase.

Details

Language :
English
ISSN :
1463-9084
Volume :
22
Issue :
43
Database :
MEDLINE
Journal :
Physical chemistry chemical physics : PCCP
Publication Type :
Academic Journal
Accession number :
33140768
Full Text :
https://doi.org/10.1039/d0cp02373f