Back to Search Start Over

Ultrafast, Ultrasensitive Detection and Imaging of Single Cardiac Troponin-T Molecules.

Authors :
Melentiev PN
Son LV
Kudryavtsev DS
Kasheverov IE
Tsetlin VI
Esenaliev RO
Balykin VI
Source :
ACS sensors [ACS Sens] 2020 Nov 25; Vol. 5 (11), pp. 3576-3583. Date of Electronic Publication: 2020 Oct 30.
Publication Year :
2020

Abstract

The fluorescence-based methods of single-molecule optical detection have opened up unprecedented possibilities for imaging, monitoring, and sensing at a single-molecule level. However, single-molecule detection methods are very slow, making them practically inapplicable. In this paper, we show how to overcome this key limitation using the expanded laser spot, laser excitation in a nonfluorescent spectral window of biomolecules, and more binding fluorescent molecules on a biomolecule that increases the detection volume and the number of collected photons. We demonstrate advantages of the developed approach unreachable by any other technique using detection of single cardiac troponin-T molecules: (i) 1000-fold faster than by known approaches, (ii) real-time imaging of single troponin-T molecules dissolved in human blood serum, (iii) measurement of troponin-T concentration with a clinically important sensitivity of about 1 pg/mL. The developed approach can be used for ultrafast, ultrasensitive detection, monitoring, and real-time imaging of other biomolecules as well as of larger objects including pathogenic viruses and bacteria.

Details

Language :
English
ISSN :
2379-3694
Volume :
5
Issue :
11
Database :
MEDLINE
Journal :
ACS sensors
Publication Type :
Academic Journal
Accession number :
33124416
Full Text :
https://doi.org/10.1021/acssensors.0c01790