Back to Search Start Over

Prevalence of phase variable epigenetic invertons among host-associated bacteria.

Authors :
Huang X
Wang J
Li J
Liu Y
Liu X
Li Z
Kurniyati K
Deng Y
Wang G
Ralph JD
De Ste Croix M
Escobar-Gonzalez S
Roberts RJ
Veening JW
Lan X
Oggioni MR
Li C
Zhang JR
Source :
Nucleic acids research [Nucleic Acids Res] 2020 Nov 18; Vol. 48 (20), pp. 11468-11485.
Publication Year :
2020

Abstract

Type I restriction-modification (R-M) systems consist of a DNA endonuclease (HsdR, HsdM and HsdS subunits) and methyltransferase (HsdM and HsdS subunits). The hsdS sequences flanked by inverted repeats (referred to as epigenetic invertons) in certain Type I R-M systems undergo invertase-catalyzed inversions. Previous studies in Streptococcus pneumoniae have shown that hsdS inversions within clonal populations produce subpopulations with profound differences in the methylome, cellular physiology and virulence. In this study, we bioinformatically identified six major clades of the tyrosine and serine family invertases homologs from 16 bacterial phyla, which potentially catalyze hsdS inversions in the epigenetic invertons. In particular, the epigenetic invertons are highly enriched in host-associated bacteria. We further verified hsdS inversions in the Type I R-M systems of four representative host-associated bacteria and found that each of the resultant hsdS allelic variants specifies methylation of a unique DNA sequence. In addition, transcriptome analysis revealed that hsdS allelic variations in Enterococcus faecalis exert significant impact on gene expression. These findings indicate that epigenetic switches driven by invertases in the epigenetic invertons broadly operate in the host-associated bacteria, which may broadly contribute to bacterial host adaptation and virulence beyond the role of the Type I R-M systems against phage infection.<br /> (© The Author(s) 2020. Published by Oxford University Press on behalf of Nucleic Acids Research.)

Details

Language :
English
ISSN :
1362-4962
Volume :
48
Issue :
20
Database :
MEDLINE
Journal :
Nucleic acids research
Publication Type :
Academic Journal
Accession number :
33119758
Full Text :
https://doi.org/10.1093/nar/gkaa907