Back to Search
Start Over
Prevalence of phase variable epigenetic invertons among host-associated bacteria.
- Source :
-
Nucleic acids research [Nucleic Acids Res] 2020 Nov 18; Vol. 48 (20), pp. 11468-11485. - Publication Year :
- 2020
-
Abstract
- Type I restriction-modification (R-M) systems consist of a DNA endonuclease (HsdR, HsdM and HsdS subunits) and methyltransferase (HsdM and HsdS subunits). The hsdS sequences flanked by inverted repeats (referred to as epigenetic invertons) in certain Type I R-M systems undergo invertase-catalyzed inversions. Previous studies in Streptococcus pneumoniae have shown that hsdS inversions within clonal populations produce subpopulations with profound differences in the methylome, cellular physiology and virulence. In this study, we bioinformatically identified six major clades of the tyrosine and serine family invertases homologs from 16 bacterial phyla, which potentially catalyze hsdS inversions in the epigenetic invertons. In particular, the epigenetic invertons are highly enriched in host-associated bacteria. We further verified hsdS inversions in the Type I R-M systems of four representative host-associated bacteria and found that each of the resultant hsdS allelic variants specifies methylation of a unique DNA sequence. In addition, transcriptome analysis revealed that hsdS allelic variations in Enterococcus faecalis exert significant impact on gene expression. These findings indicate that epigenetic switches driven by invertases in the epigenetic invertons broadly operate in the host-associated bacteria, which may broadly contribute to bacterial host adaptation and virulence beyond the role of the Type I R-M systems against phage infection.<br /> (© The Author(s) 2020. Published by Oxford University Press on behalf of Nucleic Acids Research.)
- Subjects :
- Bacteroides fragilis genetics
DNA Methylation
DNA, Bacterial chemistry
Enterococcus faecalis genetics
Inverted Repeat Sequences
Streptococcus agalactiae genetics
Treponema denticola genetics
Bacterial Proteins genetics
DNA Restriction-Modification Enzymes genetics
Epigenesis, Genetic
Gene Expression Regulation, Bacterial
Subjects
Details
- Language :
- English
- ISSN :
- 1362-4962
- Volume :
- 48
- Issue :
- 20
- Database :
- MEDLINE
- Journal :
- Nucleic acids research
- Publication Type :
- Academic Journal
- Accession number :
- 33119758
- Full Text :
- https://doi.org/10.1093/nar/gkaa907