Back to Search
Start Over
Widespread Transcriptional Readthrough Caused by Nab2 Depletion Leads to Chimeric Transcripts with Retained Introns.
- Source :
-
Cell reports [Cell Rep] 2020 Oct 27; Vol. 33 (4), pp. 108324. - Publication Year :
- 2020
-
Abstract
- Nascent RNA sequencing has revealed that pre-mRNA splicing can occur shortly after introns emerge from RNA polymerase II (RNA Pol II). Differences in co-transcriptional splicing profiles suggest regulation by cis- and/or trans-acting factors. Here, we use single-molecule intron tracking (SMIT) to identify a cohort of regulators by machine learning in budding yeast. Of these, Nab2 displays reduced co-transcriptional splicing when depleted. Unexpectedly, these splicing defects are attributable to aberrant "intrusive" transcriptional readthrough from upstream genes, as revealed by long-read sequencing. Transcripts that originate from the intron-containing gene's own transcription start site (TSS) are efficiently spliced, indicating no direct role of Nab2 in splicing per se. This work highlights the coupling between transcription, splicing, and 3' end formation in the context of gene organization along chromosomes. We conclude that Nab2 is required for proper 3' end processing, which ensures gene-specific control of co-transcriptional RNA processing.<br />Competing Interests: Declaration of Interests The authors declare no conflict of interest.<br /> (Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved.)
Details
- Language :
- English
- ISSN :
- 2211-1247
- Volume :
- 33
- Issue :
- 4
- Database :
- MEDLINE
- Journal :
- Cell reports
- Publication Type :
- Academic Journal
- Accession number :
- 33113357
- Full Text :
- https://doi.org/10.1016/j.celrep.2020.108324