Back to Search Start Over

Assessment of left and right ventricular functional parameters using dynamic dual-tracer [ 13 N]NH3 and [ 18 F]FDG PET/MRI.

Authors :
Rasul S
Beitzke D
Wollenweber T
Rausch I
Lassen ML
Stelzmüller ME
Mitterhauser M
Pichler V
Beyer T
Loewe C
Hacker M
Source :
Journal of nuclear cardiology : official publication of the American Society of Nuclear Cardiology [J Nucl Cardiol] 2022 Jun; Vol. 29 (3), pp. 1003-1017. Date of Electronic Publication: 2020 Oct 22.
Publication Year :
2022

Abstract

Background: Cardiac positron emission tomography/magnetic resonance imaging (PET/MRI) can assess various cardiovascular diseases. In this study, we intra-individually compared right (RV) and left ventricular (LV) parameters obtained from dual-tracer PET/MRI scan.<br />Methods: In 22 patients with coronary heart disease (69 ± 9 years) dynamic [ <superscript>13</superscript> N]NH <subscript>3</subscript> (NH <subscript>3</subscript> ) and [ <superscript>18</superscript> F]FDG (FDG) PET scans were acquired. The first 2 minutes were used to calculate LV and RV first-pass ejection fraction (FPEF). Additionally, LV end-systolic (LVESV) and end-diastolic (LVEDV) volume and ejection fraction (LVEF) were calculated from the early (EP) and late-myocardial phases (LP). MRI served as a reference.<br />Results: RVFPEF and LVFPEF from FDG and NH <subscript>3</subscript> as well as RVEF and LVEF from MRI were (28 ± 11%, 32 ± 15%), (32 ± 11%, 41 ± 14%) and (42 ± 16%, 45 ± 19%), respectively. LVESV, LVEDV and LVEF from EP FDG and NH <subscript>3</subscript> in 8 and 16 gates were [71 (15 to 213 mL), 98 (16 to 241 mL), 32 ± 17%] and [50 (17 to 206 mL), 93 (13 to 219 mL), 36 ± 17%] as well as [60 (19 to 360 mL), 109 (56 to 384 mL), 41 ± 22%] and [54 (16 to 371 mL), 116 (57 to 431 mL), 46 ± 24%], respectively. Moreover, LVESV, LVEDV and LVEF acquired from LP FDG and NH <subscript>3</subscript> were (85 ± 63 mL, 138 ± 63 mL, 47 ± 19%) and (79 ± 56 mL, 137 ± 63 mL, 47 ± 20%), respectively. The LVESV, LVEDV from MRI were 93 ± 66 mL and 153 ± 71 mL, respectively. Significant correlations were observed for RVFPEF and LVFPEF between FDG and MRI (R = .51, P = .01; R = .64, P = .001), respectively. LVESV, LVEDV, and LVEF revealed moderate to strong correlations to MRI when they acquired from EP FDG and NH <subscript>3</subscript> in 16 gates (all R > .7, P = .000). Similarly, all LV parameters from LP FDG and NH <subscript>3</subscript> correlated good to strongly positive with MRI (all R > .7, and P < .001), except EDV from NH3 weakly correlated to EDV of MRI (R = .54, P < .05). Generally, Bland-Altman plots showed good agreements between PET and MRI.<br />Conclusions: Deriving LV and RV functional values from various phases of dynamic NH <subscript>3</subscript> and FDG PET is feasible. These results could open a new perspective for further clinical applications of the PET examinations.<br /> (© 2020. The Author(s).)

Details

Language :
English
ISSN :
1532-6551
Volume :
29
Issue :
3
Database :
MEDLINE
Journal :
Journal of nuclear cardiology : official publication of the American Society of Nuclear Cardiology
Publication Type :
Academic Journal
Accession number :
33094471
Full Text :
https://doi.org/10.1007/s12350-020-02391-y