Back to Search
Start Over
Escherichia coli foster bladder cancer cell line progression via epithelial mesenchymal transition, stemness and metabolic reprogramming.
- Source :
-
Scientific reports [Sci Rep] 2020 Oct 22; Vol. 10 (1), pp. 18024. Date of Electronic Publication: 2020 Oct 22. - Publication Year :
- 2020
-
Abstract
- Bacteria is recognized as opportunistic tumor inhabitant, giving rise to an environmental stress that may alter tumor microenvironment, which directs cancer behavior. In vitro infection of the T24 cell line with E. coli was performed to study the bacterial impact on bladder cancer cells. EMT markers were assessed using immunohistochemistry, western blot and RT-PCR. Stemness characteristics were monitored using RT-PCR. Furthermore, the metabolic reprograming was investigated by detection of ROS and metabolic markers. A significant (p ≤ 0.001) upregulation of vimentin as well as downregulation of CK19 transcription and protein levels was reported. A significant increase (p ≤ 0.001) in the expression level of stemness markers (CD44, NANOG, SOX2 and OCT4) was reported. ROS level was elevated, that led to a significant increase (p ≤ 0.001) in UCP2. This enhanced a significant increase (p ≤ 0.001) in PDK1 to significantly downregulate PDH (p ≤ 0.001) in order to block oxidative phosphorylation in favor of glycolysis. This resulted in a significant decrease (p ≤ 0.001) of AMPK, and a significant elevation (p ≤ 0.001) of MCT1 to export the produced lactate to extracellular matrix. Thus, bacteria may induce alteration to the heterogonous tumor cell population through EMT, CSCs and metabolic reprogramming, which may improve cancer cell ability to migrate and self-renew.
- Subjects :
- Apoptosis
Cell Proliferation
Disease Progression
Epithelial-Mesenchymal Transition
Escherichia coli Infections microbiology
Humans
Neoplastic Stem Cells metabolism
Neoplastic Stem Cells microbiology
Tumor Cells, Cultured
Tumor Microenvironment
Urinary Bladder Neoplasms metabolism
Urinary Bladder Neoplasms microbiology
Cellular Reprogramming
Escherichia coli pathogenicity
Escherichia coli Infections complications
Neoplastic Stem Cells pathology
Urinary Bladder Neoplasms pathology
Subjects
Details
- Language :
- English
- ISSN :
- 2045-2322
- Volume :
- 10
- Issue :
- 1
- Database :
- MEDLINE
- Journal :
- Scientific reports
- Publication Type :
- Academic Journal
- Accession number :
- 33093503
- Full Text :
- https://doi.org/10.1038/s41598-020-74390-5