Back to Search Start Over

Synergistic Allostery in Multiligand-Protein Interactions.

Authors :
Ghode A
Gross LZF
Tee WV
Guarnera E
Berezovsky IN
Biondi RM
Anand GS
Source :
Biophysical journal [Biophys J] 2020 Nov 03; Vol. 119 (9), pp. 1833-1848. Date of Electronic Publication: 2020 Sep 28.
Publication Year :
2020

Abstract

Amide hydrogen-deuterium exchange mass spectrometry is powerful for describing combinatorial coupling effects of a cooperative ligand pair binding at noncontiguous sites: adenosine at the ATP-pocket and a docking peptide (PIFtide) at the PIF-pocket, on a model protein kinase PDK1. Binding of two ligands to PDK1 reveal multiple hotspots of synergistic allostery with cumulative effects greater than the sum of individual effects mediated by each ligand. We quantified this synergism and ranked these hotspots using a difference in deuteration-based approach, which showed that the strongest synergistic effects were observed at three of the critical catalytic loci of kinases: the αB-αC helices, and HRD-motif loop, and DFG-motif. Additionally, we observed weaker synergistic effects at a distal GHI-subdomain locus. Synergistic changes in deuterium exchange observed at a distal site but not at the intermediate sites of the large lobe of the kinase reveals allosteric propagation in proteins to operate through two modes. Direct electrostatic interactions between polar and charged amino acids that mediate targeted relay of allosteric signals, and diffused relay of allosteric signals through soft matter-like hydrophobic core amino acids. Furthermore, we provide evidence that the conserved β-3 strand lysine of protein kinases (Lys111 of PDK1) functions as an integrator node to coordinate allosteric coupling of the two ligand-binding sites. It maintains indirect interactions with the ATP-pocket and mediates a critical salt bridge with a glutamate (Glu130) of αC helix, which is conserved across all kinases. In summary, allosteric propagation in cooperative, dual-liganded enzyme targets is bidirectional and synergistic and offers a strategy for combinatorial drug development.<br /> (Copyright © 2020 Biophysical Society. Published by Elsevier Inc. All rights reserved.)

Details

Language :
English
ISSN :
1542-0086
Volume :
119
Issue :
9
Database :
MEDLINE
Journal :
Biophysical journal
Publication Type :
Academic Journal
Accession number :
33086047
Full Text :
https://doi.org/10.1016/j.bpj.2020.09.019