Back to Search Start Over

Mutation bias can shape adaptation in large asexual populations experiencing clonal interference.

Authors :
Gomez K
Bertram J
Masel J
Source :
Proceedings. Biological sciences [Proc Biol Sci] 2020 Oct 28; Vol. 287 (1937), pp. 20201503. Date of Electronic Publication: 2020 Oct 21.
Publication Year :
2020

Abstract

The extended evolutionary synthesis invokes a role for development in shaping adaptive evolution, which in population genetics terms corresponds to mutation-biased adaptation. Critics have claimed that clonal interference makes mutation-biased adaptation rare. We consider the behaviour of two simultaneously adapting traits, one with larger mutation rate U , the other with larger selection coefficient s , using asexual travelling wave models. We find that adaptation is dominated by whichever trait has the faster rate of adaptation v in isolation, with the other trait subject to evolutionary stalling. Reviewing empirical claims for mutation-biased adaptation, we find that not all occur in the 'origin-fixation' regime of population genetics where v is only twice as sensitive to s as to U . In some cases, differences in U are at least ten to twelve times larger than differences in s , as needed to cause mutation-biased adaptation even in the 'multiple mutations' regime. Surprisingly, when U > s in the 'diffusive-mutation' regime, the required sensitivity ratio is also only two, despite pervasive clonal interference. Given two traits with identical v , the benefit of having higher s is surprisingly small, occurring largely when one trait is at the boundary between the origin-fixation and multiple mutations regimes.

Details

Language :
English
ISSN :
1471-2954
Volume :
287
Issue :
1937
Database :
MEDLINE
Journal :
Proceedings. Biological sciences
Publication Type :
Academic Journal
Accession number :
33081612
Full Text :
https://doi.org/10.1098/rspb.2020.1503