Back to Search Start Over

Supervised Health Stage Prediction Using Convolutional Neural Networks for Bearing Wear.

Authors :
Suh S
Jang J
Won S
Jha MS
Lee YO
Source :
Sensors (Basel, Switzerland) [Sensors (Basel)] 2020 Oct 16; Vol. 20 (20). Date of Electronic Publication: 2020 Oct 16.
Publication Year :
2020

Abstract

Early detection of faults in rotating machinery systems is crucial in preventing system failure, increasing safety, and reducing maintenance costs. Current methods of fault detection suffer from the lack of efficient feature extraction method, the need for designating a threshold producing minimal false alarm rates, and the need for expert domain knowledge, which is costly. In this paper, we propose a novel data-driven health division method based on convolutional neural networks using a graphical representation of time series data, called a nested scatter plot. The proposed method trains the model with a small amount of labeled data and does not require a threshold value to predict the health state of rotary machines. Notwithstanding the lack of datasets that show the ground truth of health stages, our experiments with two open datasets of run-to-failure bearing demonstrated that our method is able to detect the early symptoms of bearing wear earlier and more efficiently than other threshold-based health indicator methods.

Details

Language :
English
ISSN :
1424-8220
Volume :
20
Issue :
20
Database :
MEDLINE
Journal :
Sensors (Basel, Switzerland)
Publication Type :
Academic Journal
Accession number :
33081097
Full Text :
https://doi.org/10.3390/s20205846