Back to Search
Start Over
Machine Learning to Develop and Internally Validate a Predictive Model for Post-operative Delirium in a Prospective, Observational Clinical Cohort Study of Older Surgical Patients.
- Source :
-
Journal of general internal medicine [J Gen Intern Med] 2021 Feb; Vol. 36 (2), pp. 265-273. Date of Electronic Publication: 2020 Oct 19. - Publication Year :
- 2021
-
Abstract
- Background: Our objective was to assess the performance of machine learning methods to predict post-operative delirium using a prospective clinical cohort.<br />Methods: We analyzed data from an observational cohort study of 560 older adults (≥ 70 years) without dementia undergoing major elective non-cardiac surgery. Post-operative delirium was determined by the Confusion Assessment Method supplemented by a medical chart review (N = 134, 24%). Five machine learning algorithms and a standard stepwise logistic regression model were developed in a training sample (80% of participants) and evaluated in the remaining hold-out testing sample. We evaluated three overlapping feature sets, restricted to variables that are readily available or minimally burdensome to collect in clinical settings, including interview and medical record data. A large feature set included 71 potential predictors. A smaller set of 18 features was selected by an expert panel using a consensus process, and this smaller feature set was considered with and without a measure of pre-operative mental status.<br />Results: The area under the receiver operating characteristic curve (AUC) was higher in the large feature set conditions (range of AUC, 0.62-0.71 across algorithms) versus the selected feature set conditions (AUC range, 0.53-0.57). The restricted feature set with mental status had intermediate AUC values (range, 0.53-0.68). In the full feature set condition, algorithms such as gradient boosting, cross-validated logistic regression, and neural network (AUC = 0.71, 95% CI 0.58-0.83) were comparable with a model developed using traditional stepwise logistic regression (AUC = 0.69, 95% CI 0.57-0.82). Calibration for all models and feature sets was poor.<br />Conclusions: We developed machine learning prediction models for post-operative delirium that performed better than chance and are comparable with traditional stepwise logistic regression. Delirium proved to be a phenotype that was difficult to predict with appreciable accuracy.
Details
- Language :
- English
- ISSN :
- 1525-1497
- Volume :
- 36
- Issue :
- 2
- Database :
- MEDLINE
- Journal :
- Journal of general internal medicine
- Publication Type :
- Academic Journal
- Accession number :
- 33078300
- Full Text :
- https://doi.org/10.1007/s11606-020-06238-7