Back to Search Start Over

Intra-cisterna magna delivery of an AAV vector with the GLUT1 promoter in a pig recapitulates the physiological expression of SLC2A1.

Authors :
Nakamura S
Osaka H
Muramatsu SI
Takino N
Ito M
Jimbo EF
Watanabe C
Hishikawa S
Nakajima T
Yamagata T
Source :
Gene therapy [Gene Ther] 2021 Jun; Vol. 28 (6), pp. 329-338. Date of Electronic Publication: 2020 Oct 19.
Publication Year :
2021

Abstract

Glucose transporter 1 deficiency syndrome (GLUT1DS) is caused by haplo-insufficiency of SLC2A1, which encodes GLUT1, resulting in impaired hexose transport into the brain. Previously, we generated a tyrosine-mutant AAV9/3 vector in which SLC2A1 was expressed under the control of the endogenous GLUT1 promoter (AAV-GLUT1), and confirmed the improved motor function and cerebrospinal fluid glucose levels of Glut1-deficient mice after cerebroventricular injection of AAV-GLUT1. In preparation for clinical application, we examined the expression of transgenes after intra-cisterna magna injection of AAV-GFP (tyrosine-mutant AAV9/3-GFP with the CMV promoter) and AAV-GLUT1. We injected AAV-GFP or AAV-GLUT1 (1.63 × 10 <superscript>12</superscript> vector genomes/kg) into the cisterna magna of pigs to compare differential promoter activity. After AAV-GFP injection, exogenous GFP was expressed in broad areas of the brain and peripheral organs. After AAV-GLUT1 injection, exogenous GLUT1 was expressed predominantly in the brain. At the cellular level, exogenous GLUT1 was mainly expressed in the endothelium, followed by glia and neurons, which was contrasted with the neuronal-predominant expression of GFP by the CMV promotor. We consider intra-cisterna magna injection of AAV-GLUT1 to be a feasible approach for gene therapy of GLUT1DS.

Details

Language :
English
ISSN :
1476-5462
Volume :
28
Issue :
6
Database :
MEDLINE
Journal :
Gene therapy
Publication Type :
Academic Journal
Accession number :
33077933
Full Text :
https://doi.org/10.1038/s41434-020-00203-z