Back to Search Start Over

Muramyl dipeptide promotes Aβ1-42 oligomer production via the NOD2/p-p38 MAPK/BACE1 signaling pathway in the SH-SY5Y cells.

Authors :
Chen YJ
Chan YJ
Chen WJ
Li YM
Zhang CY
Source :
Journal of integrative neuroscience [J Integr Neurosci] 2020 Sep 30; Vol. 19 (3), pp. 421-428.
Publication Year :
2020

Abstract

The relationship between chronic bacterial colonization in the brain and Alzheimer's disease is attracting extensive attention. Recent studies indicated that the components of bacterial biofilm drive the amyloid-β production. Muramyl dipeptide, the minimal bioactive peptidoglycan motif common to all bacteria, contributes to the development of many central inflammatory and neurodegenerative disorders. However, the involvement of Muramyl dipeptide in amyloid-β production is not completely defined. In our present study, wild type mice received an intracerebroventricular injection of normal saline or Muramyl dipeptide. Data showed that the production of Aβ1-42 oligomers was significantly increased after Muramyl dipeptide injection in the wild type mice or incubation of the SH-SY5Y cells with Muramyl dipeptide. Moreover, the action of Muramyl dipeptide was dose- and time-dependent. The above results suggested a possibility that the Muramyl dipeptide-induced Aβ1-42 oligomer production might be related to the NOD2/p-p38 MAPK/BACE1 pathway. To confirm this, the SH-SY5Y cells were transfected with siRNA NOD2. Data showed that the transfected SH-SY5Y cells exhibited decreased expression of Aβ1-42 oligomer, NOD2, p-p38 MAPK, and BACE1 after treatment with Muramyl dipeptide. Finally, SH-SY5Y cells were pretreated with SB203580, an inhibitor of the p-38-MAPK pathway. The results indicated that these pretreated SH-SY5Y cells exhibited decreased expression of Aβ1-42 oligomer, p-p38 MAPK, and BACE1 after treatment with Muramyl dipeptide. In conclusion, these results suggested that Muramyl dipeptide was the trigger factor for Aβ1-42 oligomer production, which probably acts via the NOD2/p-p38 MAPK/BACE1 signaling pathway.<br />Competing Interests: All authors declare no conflicts of interest.<br /> (© 2020 Chen et al. Published by IMR press.)

Details

Language :
English
ISSN :
0219-6352
Volume :
19
Issue :
3
Database :
MEDLINE
Journal :
Journal of integrative neuroscience
Publication Type :
Academic Journal
Accession number :
33070520
Full Text :
https://doi.org/10.31083/j.jin.2020.03.112