Back to Search Start Over

Predicting Length of Stay for Cardiovascular Hospitalizations in the Intensive Care Unit: Machine Learning Approach.

Authors :
Alsinglawi B
Alnajjar F
Mubin O
Novoa M
Alorjani M
Karajeh O
Darwish O
Source :
Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference [Annu Int Conf IEEE Eng Med Biol Soc] 2020 Jul; Vol. 2020, pp. 5442-5445.
Publication Year :
2020

Abstract

Predicting Cardiovascular Length of stay based hospitalization at the time of patients' admitting to the coronary care unit (CCU) or (cardiac intensive care units CICU) is deemed as a challenging task to hospital management systems globally. Recently, few studies examined the length of stay (LOS) predictive analytics for cardiovascular inpatients in ICU. However, there are almost scarcely real attempts utilized machine learning models to predict the likelihood of heart failure patients length of stay in ICU hospitalization. This paper introduces a predictive research architecture to predict Length of Stay (LOS) for heart failure diagnoses from electronic medical records using the state-of-art- machine learning models, in particular, the ensembles regressors and deep learning regression models. Our results showed that the gradient boosting regressor (GBR) outweighed the other proposed models in this study. The GBR reported higher R-squared value followed by the proposed method in this study called Staking Regressor. Additionally, The Random forest Regressor (RFR) was the fastest model to train. Our outcomes suggested that deep learning-based regressor did not achieve better results than the traditional regression model in this study. This work contributes to the field of predictive modelling for electronic medical records for hospital management systems.

Details

Language :
English
ISSN :
2694-0604
Volume :
2020
Database :
MEDLINE
Journal :
Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Publication Type :
Academic Journal
Accession number :
33019211
Full Text :
https://doi.org/10.1109/EMBC44109.2020.9175889