Back to Search Start Over

A Mechanized Pediatric Elbow Joint Powered by a De-Based Artificial Skeletal Muscle.

Authors :
Behboodi A
DeSantis C
Lubsen J
Lee SCK
Source :
Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference [Annu Int Conf IEEE Eng Med Biol Soc] 2020 Jul; Vol. 2020, pp. 4930-4935.
Publication Year :
2020

Abstract

To increase the acceptability of exoskeletons, there is growing attention toward finding an alternative soft actuator that can safely perform at close vicinity of the human body. In this study, we investigated the capability of the dielectric elastomer actuators (DEAs), for muscle-like actuation of rehabilitation robots. First, an artificial skeletal muscle was configured using commercially available stacked DEAs arranged in a 3x4 array of three parallel fibers consisting of four DEAs connected in series. The shortening and force generation capabilities of this artificial muscle were then measured. An alternate 3x5 version of this muscle was mounted on the forearm of an upper extremity phantom model to actuate its elbow joint. The actuation capability of this muscle was then tested under various tensile loads, 1 N to 4 N, placed at the center of mass of the forearm+hand of the phantom model. The active range of motion and angular velocity of the phantom model's tip of the hand were measured using a motion capture system. The 3×4 artificial muscle produced 30.47 N of force and 5.3 mm of maximum shortening. The 3x5 artificial muscle was capable of actuating the elbow flexion 19.5º with 16.2 º/s angular velocity in the sagittal plane, under a 1 N tensile load. The active range of motion was substantially reduced as the tensile loads increased, which limits the capability of these muscles in the current upper extremity exoskeleton design.

Details

Language :
English
ISSN :
2694-0604
Volume :
2020
Database :
MEDLINE
Journal :
Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Publication Type :
Academic Journal
Accession number :
33019094
Full Text :
https://doi.org/10.1109/EMBC44109.2020.9176332