Back to Search Start Over

A miniature mechanical testing device for testing hydrogel-based biomaterials in a confocal microscope.

Authors :
Creamer SA
Lam Po Tang EJ
Nielsen PMF
Taberner AJ
Source :
Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference [Annu Int Conf IEEE Eng Med Biol Soc] 2020 Jul; Vol. 2020, pp. 2262-2265.
Publication Year :
2020

Abstract

Cardiac muscle cells are the fundamental building blocks of the heart, yet little is known about their mechanical properties in either healthy or diseased states. While many have explored unloaded myocyte behavior under a variety of interventions, methods for force measurements are limited due to cell fragility. Here, we present a custom device for manipulation and mechanical testing of hydrogels embedded with delicate cardiac muscle cells. Consisting of a custom disposable flexure, which is easily interchangeable, the device has the potential for high throughput testing of cell-gel constructs. Additionally, the mechanical testing device is the size of a microscope slide - appropriate for use in most microscopes, for simultaneous imaging of the sample. The mechanical properties of a gelatin-methacryloyl hydrogel sample were assessed, and 3D volumes of gel imaged using a confocal microscope. The Young's modulus of the gel was found to be 33kPa.Clinical Relevance- High-throughput testing provides the potential to gain insight into cardiac cell mechanics. Experimentation under the influence of a variety of pharmacological interventions could improve the rate at which treatments for cardiac disease are developed. Furthermore, methods may be extended to other embedded biological tissues.

Details

Language :
English
ISSN :
2694-0604
Volume :
2020
Database :
MEDLINE
Journal :
Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Publication Type :
Academic Journal
Accession number :
33018458
Full Text :
https://doi.org/10.1109/EMBC44109.2020.9176463