Back to Search
Start Over
Unsupervised Clustering of HRV Features Reveals Preictal Changes in Human Epilepsy.
- Source :
-
Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference [Annu Int Conf IEEE Eng Med Biol Soc] 2020 Jul; Vol. 2020, pp. 698-701. - Publication Year :
- 2020
-
Abstract
- Over a third of patients suffering from epilepsy continue to live with recurrent disabling seizures and would greatly benefit from personalized seizure forecasting. While electroencephalography (EEG) remains most popular for studying subject-specific epileptic precursors, dysfunctions of the autonomous nervous system, notably cardiac activity measured in heart rate variability (HRV), have also been associated with epileptic seizures. This work proposes an unsupervised clustering technique which aims to automatically identify preictal HRV changes in 9 patients who underwent simultaneous electrocardiography (ECG) and intracranial EEG presurgical monitoring at the University of Montreal Hospital Center. A 2-class k-means clustering combined with a quantitative preictal HRV change detection technique were adopted in a subject- and seizure-specific manner. Results indicate inter and intra-patient variability in preictal HRV changes (between 3.5 and 6.5 min before seizure onset) and a statistically significant negative correlation between the time of change in HRV state and the duration of seizures (p<0.05). The presented findings show promise for new avenues of research regarding multimodal seizure prediction and unsupervised preictal time assessment.Clinical Relevance- This study proposed an unsupervised technique for quantitatively identifying preictal HRV changes which can be eventually used to implement an ECG-based seizure forecasting algorithm.
- Subjects :
- Cluster Analysis
Electroencephalography
Heart Rate
Humans
Seizures diagnosis
Epilepsy
Subjects
Details
- Language :
- English
- ISSN :
- 2694-0604
- Volume :
- 2020
- Database :
- MEDLINE
- Journal :
- Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
- Publication Type :
- Academic Journal
- Accession number :
- 33018083
- Full Text :
- https://doi.org/10.1109/EMBC44109.2020.9175739