Back to Search Start Over

Cranial synchondroses of primates at birth.

Authors :
Smith TD
Reynolds RL
Mano N
Wood BJ
Oladipupo L
Hughes GK
Corbin HM
Taylor J
Ufelle A
Burrows AM
Durham E
Vinyard CJ
Cray JJ
DeLeon VB
Source :
Anatomical record (Hoboken, N.J. : 2007) [Anat Rec (Hoboken)] 2021 May; Vol. 304 (5), pp. 1020-1053. Date of Electronic Publication: 2020 Oct 14.
Publication Year :
2021

Abstract

Cranial synchondroses are cartilaginous joints between basicranial bones or between basicranial bones and septal cartilage, and have been implicated as having a potential active role in determining craniofacial form. However, few studies have examined them histologically. Using histological and immunohistochemical methods, we examined all basicranial joints in serial sagittal sections of newborn heads from nine genera of primates (five anthropoids, four strepsirrhines). Each synchondrosis was examined for characteristics of active growth centers, including a zonal distribution of proliferating and hypertrophic chondrocytes, as well as corresponding changes in matrix characteristics (i.e., density and organization of Type II collagen). Results reveal three midline and three bilateral synchondroses possess attributes of active growth centers in all species (sphenooccipital, intrasphenoidal, presphenoseptal). One midline synchondrosis (ethmoseptal) and one bilateral synchondrosis (alibasisphenoidal synchondrosis [ABS]) are active growth centers in some but not all newborn primates. ABS is oriented more anteriorly in monkeys compared to lemurs and bushbabies. The sphenoethmoidal synchondrosis (SES) varies at birth: in monkeys, it is a suture-like joint (i.e., fibrous tissue between the two bones); however, in strepsirrhines, the jugum sphenoidale is ossified while the mesethmoid remains cartilaginous. No species possesses an SES that has the organization of a growth plate. Overall, our findings demonstrate that only four midline synchondroses have the potential to actively affect basicranial angularity and facial orientation during the perinatal timeframe, while the SES of anthropoids essentially transitions toward a "suture-like" function, permitting passive growth postnatally. Loss of cartilaginous continuity at SES and reorientation of ABS distinguish monkeys from strepsirrhines.<br /> (© 2021 American Association for Anatomy.)

Details

Language :
English
ISSN :
1932-8494
Volume :
304
Issue :
5
Database :
MEDLINE
Journal :
Anatomical record (Hoboken, N.J. : 2007)
Publication Type :
Academic Journal
Accession number :
33015949
Full Text :
https://doi.org/10.1002/ar.24521