Back to Search Start Over

Exposure to tert-Butylphenyl Diphenyl Phosphate, an Organophosphate Ester Flame Retardant and Plasticizer, Alters Hedgehog Signaling in Murine Limb Bud Cultures.

Authors :
Yan H
Hales BF
Source :
Toxicological sciences : an official journal of the Society of Toxicology [Toxicol Sci] 2020 Dec 01; Vol. 178 (2), pp. 251-263.
Publication Year :
2020

Abstract

Organophosphate esters have become widely used as flame retardants since the phase out of polybrominated diphenyl ethers. Previously, we demonstrated that some organophosphate esters, such as tert-butylphenyl diphenyl phosphate (BPDP), were more detrimental to endochondral ossification in murine limb bud cultures than one of the major polybrominated diphenyl ethers that they replaced, 2,2',4,4'-tetrabromodiphenyl ether. Here, we used a transcriptomic approach to elucidate the mechanism of action of BPDP in the developing limb. Limb buds collected from gestation day 13 CD1 mouse embryos were cultured for 3 or 24 h in the presence of vehicle, 1 μM, or 10 μM BPDP. RNA sequencing analyses revealed that exposure to 1 µM BPDP for 24 h increased the expression of 5 transcripts, including Ihh, and decreased 14 others, including Gli1, Ptch1, Ptch2, and other targets of Hedgehog (Hh) signaling. Pathway analysis predicted the inhibition of Hh signaling. Attenuation of Hh signaling activity began earlier and reached a greater magnitude after exposure to 10 µM BPDP. Because this pathway is part of the regulatory network governing endochondral ossification, we used a known Hh agonist, purmorphamine, to determine the contribution of Hh signaling inhibition to the negative impact of BPDP on endochondral ossification. Cotreatment of limbs with purmorphamine rescued the detrimental morphological changes in the cartilage template induced by BPDP exposure though it did not restore the expression of key transcription factors, Runx2 and Sp7, to control levels. These data highlight Hh signaling as a developmentally important pathway vulnerable to environmental chemical exposures.<br /> (© The Author(s) 2020. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.)

Details

Language :
English
ISSN :
1096-0929
Volume :
178
Issue :
2
Database :
MEDLINE
Journal :
Toxicological sciences : an official journal of the Society of Toxicology
Publication Type :
Academic Journal
Accession number :
32976586
Full Text :
https://doi.org/10.1093/toxsci/kfaa145