Back to Search Start Over

High-precision processing method for an aluminum mirror assisted with a femtosecond laser.

Authors :
Zhao T
Hu H
Peng XQ
Guan CL
Dai YF
Yong JH
Gan ZH
Source :
Applied optics [Appl Opt] 2020 Sep 20; Vol. 59 (27), pp. 8335-8341.
Publication Year :
2020

Abstract

At present, aluminum-based optical payloads are widely used in the aviation and aerospace field, and the demand for aluminum mirrors has become increasingly urgent in the visible light region. The main processing of an aluminum alloy mirror involves single-point diamond turning followed by a combined polishing process. Among these processes, magnetorheological finishing (MRF) is an important method for improving a surface figure. During the MRF process, excessive impurity contaminants are introduced into the surface of the aluminum mirror, thereby reducing surface reflectivity. In this paper, theoretical analysis and time-of-flight secondary ion mass spectrometry depth profiling were used to obtain the cause of pollution, and the process scheme of femtosecond laser cleaning was proposed. After verifying the feasibility, a new, to the best of our knowledge, process route was implemented on a Φ 50 m m aluminum mirror. Finally, the surface figure of RMS 0.022 λ and the surface roughness of Ra 3.24 nm were obtained. In addition, reflectance in the visible light and near-infrared bands has increased by about 50%.

Details

Language :
English
ISSN :
1539-4522
Volume :
59
Issue :
27
Database :
MEDLINE
Journal :
Applied optics
Publication Type :
Academic Journal
Accession number :
32976419
Full Text :
https://doi.org/10.1364/AO.400746