Back to Search Start Over

Development of Anthraquinone Derivatives as Ectonucleoside Triphosphate Diphosphohydrolase (NTPDase) Inhibitors With Selectivity for NTPDase2 and NTPDase3.

Authors :
Baqi Y
Rashed M
Schäkel L
Malik EM
Pelletier J
Sévigny J
Fiene A
Müller CE
Source :
Frontiers in pharmacology [Front Pharmacol] 2020 Aug 27; Vol. 11, pp. 1282. Date of Electronic Publication: 2020 Aug 27 (Print Publication: 2020).
Publication Year :
2020

Abstract

Ectonucleoside triphosphate diphosphohydrolases (NTPDases) catalyze the hydrolysis of nucleoside tri- and di-phosphates to mono-phosphates. The products are subsequently hydrolyzed by ecto-5'-nucleotidase (ecto-5'-NT) to nucleosides. NTPDase inhibitors have potential as novel drugs, e.g., for the treatment of inflammation, neurodegenerative diseases, and cancer. In this context, a series of anthraquinone derivatives structurally related to the anthraquinone dye reactive blue-2 (RB-2) was synthesized and evaluated as inhibitors of human NTPDases utilizing a malachite green assay. We identified several potent and selective inhibitors of human NTPDase2 and -3. Among the most potent NTPDase2 inhibitors were 1-amino-4-(9-phenanthrylamino)-9,10-dioxo-9,10-dihydroanthracene-2-sulfonate (20, PSB-16131, IC <subscript>50</subscript> of 539 nM) and 1-amino-4-(3-chloro-4-phenylsulfanyl)phenylamino-9,10-dioxo-9,10-dihydroanthracene-2-sulfonate (48, PSB-2020, IC <subscript>50</subscript> of 551 nM). The most potent NTPDase3 inhibitors were 1-amino-4-[3-(4,6-dichlorotriazin-2-ylamino)-4-sulfophenylamino]-9,10-dioxo-9,10-dihydroanthracene-2-sulfonate (42, PSB-1011, IC <subscript>50</subscript> of 390 nM) and 1-amino-4-(3-carboxy-4-hydroxyphenylamino)-9,10-dioxo-9,10-dihydroanthracene-2-sulfonate (33, PSB-2046, IC <subscript>50</subscript> of 723 nM). The best NTPDase2 inhibitor 20 showed a non-competitive inhibition type, while the NTPDase3 inhibitor 42 behaved as a mixed-type inhibitor. These potent compounds were found to be selective vs. other NTPDases. They will be useful tools for studying the roles of NTPDase2 and -3 in physiology and under pathological conditions.<br /> (Copyright © 2020 Baqi, Rashed, Schäkel, Malik, Pelletier, Sévigny, Fiene and Müller.)

Details

Language :
English
ISSN :
1663-9812
Volume :
11
Database :
MEDLINE
Journal :
Frontiers in pharmacology
Publication Type :
Academic Journal
Accession number :
32973513
Full Text :
https://doi.org/10.3389/fphar.2020.01282