Back to Search Start Over

Quantitative in vivo bioluminescence imaging of orthotopic patient-derived glioblastoma xenografts.

Authors :
Koessinger AL
Koessinger D
Stevenson K
Cloix C
Mitchell L
Nixon C
Gomez-Roman N
Chalmers AJ
Norman JC
Tait SWG
Source :
Scientific reports [Sci Rep] 2020 Sep 21; Vol. 10 (1), pp. 15361. Date of Electronic Publication: 2020 Sep 21.
Publication Year :
2020

Abstract

Despite extensive research, little progress has been made in glioblastoma therapy, owing in part to a lack of adequate preclinical in vivo models to study this disease. To mitigate this, primary patient-derived cell lines, which maintain their specific stem-like phenotypes, have replaced established glioblastoma cell lines. However, due to heterogenous tumour growth inherent in glioblastoma, the use of primary cells for orthotopic in vivo studies often requires large experimental group sizes. Therefore, when using intracranial patient-derived xenograft (PDX) approaches, it is advantageous to deploy imaging techniques to monitor tumour growth and allow stratification of mice. Here we show that stable expression of near-infrared fluorescent protein (iRFP) in patient-derived glioblastoma cells enables rapid, direct non-invasive monitoring of tumour development without compromising tumour stemness or tumorigenicity. Moreover, as this approach does not depend on the use of agents like luciferin, which can cause variability due to changing bioavailability, it can be used for quantitative longitudinal monitoring of tumour growth. Notably, we show that this technique also allows quantitative assessment of tumour burden in highly invasive models spreading throughout the brain. Thus, iRFP transduction of primary patient-derived glioblastoma cells is a reliable, cost- and time-effective way to monitor heterogenous orthotopic PDX growth.

Details

Language :
English
ISSN :
2045-2322
Volume :
10
Issue :
1
Database :
MEDLINE
Journal :
Scientific reports
Publication Type :
Academic Journal
Accession number :
32958777
Full Text :
https://doi.org/10.1038/s41598-020-72322-x