Back to Search Start Over

Sleep inhibition induced by amyloid-β oligomers is mediated by the cellular prion protein.

Authors :
Del Gallo F
Bianchi S
Bertani I
Messa M
Colombo L
Balducci C
Salmona M
Imeri L
Chiesa R
Source :
Journal of sleep research [J Sleep Res] 2021 Jun; Vol. 30 (3), pp. e13187. Date of Electronic Publication: 2020 Sep 09.
Publication Year :
2021

Abstract

Sleep is severely impaired in patients with Alzheimer's disease. Amyloid-β deposition in the brain of Alzheimer's disease patients is a key event in its pathogenesis and is associated with disrupted sleep, even before the appearance of cognitive decline. Because soluble amyloid-β oligomers are the key mediators of synaptic and cognitive dysfunction in Alzheimer's disease and impair long-term memory in rodents, the first aim of this study was to test the hypothesis that amyloid-β oligomers would directly impair sleep in mice. The cellular prion protein is a cell surface glycoprotein of uncertain function. Because cellular prion protein binds oligomeric amyloid-β with high affinity and mediates some of its neurotoxic effects, the second aim of the study was to test whether amyloid-β oligomer-induced sleep alterations were mediated by cellular prion protein. To address these aims, wild-type and cellular prion protein-deficient mice were given acute intracerebroventricular injections (on different days, at lights on) of vehicle and synthetic amyloid-β oligomers. Compared to vehicle, amyloid-β oligomers significantly reduced the amount of time spent in non-rapid eye movement sleep by wild-type mice during both the light and dark phases of the light-dark cycle. The amount of time spent in rapid eye movement sleep was reduced during the dark phase. Sleep was also fragmented by amyloid-β oligomers, as the number of transitions between states increased in post-injection hours 9-24. No such effects were observed in cellular prion protein-deficient mice. These results show that amyloid-β oligomers do inhibit and fragment sleep, and that these effects are mediated by cellular prion protein.<br /> (© 2020 European Sleep Research Society.)

Details

Language :
English
ISSN :
1365-2869
Volume :
30
Issue :
3
Database :
MEDLINE
Journal :
Journal of sleep research
Publication Type :
Academic Journal
Accession number :
32902030
Full Text :
https://doi.org/10.1111/jsr.13187