Back to Search Start Over

Graphene Quantum Dots' Surface Chemistry Modulates the Sensitivity of Glioblastoma Cells to Chemotherapeutics.

Authors :
Perini G
Palmieri V
Ciasca G
D'Ascenzo M
Gervasoni J
Primiano A
Rinaldi M
Fioretti D
Prampolini C
Tiberio F
Lattanzi W
Parolini O
De Spirito M
Papi M
Source :
International journal of molecular sciences [Int J Mol Sci] 2020 Aug 31; Vol. 21 (17). Date of Electronic Publication: 2020 Aug 31.
Publication Year :
2020

Abstract

Recent evidence has shown that graphene quantum dots (GQDs) are capable of crossing the blood-brain barrier, the barrier that reduces cancer therapy efficacy. Here, we tested three alternative GQDs' surface chemistries on two neural lineages (glioblastoma cells and mouse cortical neurons). We showed that surface chemistry modulates GQDs' biocompatibility. When used in combination with the chemotherapeutic drug doxorubicin, GDQs exerted a synergistic effect on tumor cells, but not on neurons. This appears to be mediated by the modification of membrane permeability induced by the surface of GQDs. Our findings highlight that GQDs can be adopted as a suitable delivery and therapeutic strategy for the treatment of glioblastoma, by both directly destabilizing the cell membrane and indirectly increasing the efficacy of chemotherapeutic drugs.

Details

Language :
English
ISSN :
1422-0067
Volume :
21
Issue :
17
Database :
MEDLINE
Journal :
International journal of molecular sciences
Publication Type :
Academic Journal
Accession number :
32878114
Full Text :
https://doi.org/10.3390/ijms21176301