Back to Search Start Over

Stable and high yield growth of GaP and In 0.2 Ga 0.8 As nanowire arrays using In as a catalyst.

Authors :
Scaccabarozzi A
Cattoni A
Patriarche G
Travers L
Collin S
Harmand JC
Glas F
Oehler F
Source :
Nanoscale [Nanoscale] 2020 Sep 17; Vol. 12 (35), pp. 18240-18248.
Publication Year :
2020

Abstract

We report the first investigation of indium (In) as the vapor-liquid-solid catalyst of GaP and InGaAs nanowires by molecular beam epitaxy. A strong asymmetry in the Ga distribution between the liquid and solid phases allows one to obtain pure GaP and In0.2Ga0.8As nanowires while the liquid catalyst remains nearly pure In. This uncommon In catalyst presents several advantages. First, the nanowire morphology can be tuned by changing the In flux alone, independently of the Ga and group V fluxes. Second, the nanowire crystal structure always remains cubic during steady state growth and catalyst crystallization, despite the low contact angle of the liquid droplet measured after growth (95°). Third, the vertical yield of In-catalyzed GaP and (InGa)As nanowire arrays on patterned silicon substrates increases dramatically. Combining straight sidewalls, controllable morphologies and a high vertical yield, In-catalysts provide an alternative to the standard Au or Ga alloys for the bottom-up growth of large scale homogeneous arrays of (InGa)As or GaP nanowires.

Details

Language :
English
ISSN :
2040-3372
Volume :
12
Issue :
35
Database :
MEDLINE
Journal :
Nanoscale
Publication Type :
Academic Journal
Accession number :
32856654
Full Text :
https://doi.org/10.1039/d0nr04139d