Back to Search Start Over

Hydrogen Peroxide Production by the Spot-Like Mode Action of Bisphenol A.

Authors :
Adamakis IS
Sperdouli I
Eleftheriou EP
Moustakas M
Source :
Frontiers in plant science [Front Plant Sci] 2020 Aug 05; Vol. 11, pp. 1196. Date of Electronic Publication: 2020 Aug 05 (Print Publication: 2020).
Publication Year :
2020

Abstract

Bisphenol A (BPA), an intermediate chemical used for synthesizing polycarbonate plastics, has now become a wide spread organic pollutant. It percolates from a variety of sources, and plants are among the first organisms to encounter, absorb, and metabolize it, while its toxic effects are not yet fully known. Therefore, we experimentally studied the effects of aqueous BPA solutions (50 and 100 mg L <superscript>-1</superscript> , for 6, 12, and 24 h) on photosystem II (PSII) functionality and evaluated the role of reactive oxygen species (ROS) on detached leaves of the model plant Arabidopsis thaliana . Chlorophyll fluorescence imaging analysis revealed a spatiotemporal heterogeneity in the quantum yields of light energy partitioning at PSII in Arabidopsis leaves exposed to BPA. Under low light PSII function was negatively influenced only at the spot-affected BPA zone in a dose- and time-dependent manner, while at the whole leaf only the maximum photochemical efficiency (F v /F m ) was negatively affected. However, under high light all PSII photosynthetic parameters measured were negatively affected by BPA application, in a time-dependent manner. The affected leaf areas by the spot-like mode of BPA action showed reduced chlorophyll autofluorescence and increased accumulation of hydrogen peroxide (H <subscript>2</subscript> O <subscript>2</subscript> ). When H <subscript>2</subscript> O <subscript>2</subscript> was scavenged via N-acetylcysteine under BPA exposure, PSII functionality was suspended, while H <subscript>2</subscript> O <subscript>2</subscript> scavenging under non-stress had more detrimental effects on PSII function than BPA alone. It can be concluded that the necrotic death-like spots under BPA exposure could be due to ROS accumulation, but also H <subscript>2</subscript> O <subscript>2</subscript> generation seems to play a role in the leaf response against BPA-related stress conditions.<br /> (Copyright © 2020 Adamakis, Sperdouli, Eleftheriou and Moustakas.)

Details

Language :
English
ISSN :
1664-462X
Volume :
11
Database :
MEDLINE
Journal :
Frontiers in plant science
Publication Type :
Academic Journal
Accession number :
32849741
Full Text :
https://doi.org/10.3389/fpls.2020.01196