Back to Search
Start Over
The FDA-approved drug Alectinib compromises SARS-CoV-2 nucleocapsid phosphorylation and inhibits viral infection in vitro.
- Source :
-
BioRxiv : the preprint server for biology [bioRxiv] 2020 Dec 16. Date of Electronic Publication: 2020 Dec 16. - Publication Year :
- 2020
-
Abstract
- While vaccines are vital for preventing COVID-19 infections, it is critical to develop new therapies to treat patients who become infected. Pharmacological targeting of a host factor required for viral replication can suppress viral spread with a low probability of viral mutation leading to resistance. In particular, host kinases are highly druggable targets and a number of conserved coronavirus proteins, notably the nucleoprotein (N), require phosphorylation for full functionality. In order to understand how targeting kinases could be used to compromise viral replication, we used a combination of phosphoproteomics and bioinformatics as well as genetic and pharmacological kinase inhibition to define the enzymes important for SARS-CoV-2 N protein phosphorylation and viral replication. From these data, we propose a model whereby SRPK1/2 initiates phosphorylation of the N protein, which primes for further phosphorylation by GSK-3a/b and CK1 to achieve extensive phosphorylation of the N protein SR-rich domain. Importantly, we were able to leverage our data to identify an FDA-approved kinase inhibitor, Alectinib, that suppresses N phosphorylation by SRPK1/2 and limits SARS-CoV-2 replication. Together, these data suggest that repurposing or developing novel host-kinase directed therapies may be an efficacious strategy to prevent or treat COVID-19 and other coronavirus-mediated diseases.
Details
- Language :
- English
- ISSN :
- 2692-8205
- Database :
- MEDLINE
- Journal :
- BioRxiv : the preprint server for biology
- Publication Type :
- Academic Journal
- Accession number :
- 32817937
- Full Text :
- https://doi.org/10.1101/2020.08.14.251207