Back to Search
Start Over
Gain-of-function mutation in SCN11A causes itch and affects neurogenic inflammation and muscle function in Scn11a+/L799P mice.
- Source :
-
PloS one [PLoS One] 2020 Aug 20; Vol. 15 (8), pp. e0237101. Date of Electronic Publication: 2020 Aug 20 (Print Publication: 2020). - Publication Year :
- 2020
-
Abstract
- Mutations in the genes encoding for voltage-gated sodium channels cause profound sensory disturbances and other symptoms dependent on the distribution of a particular channel subtype in different organs. Humans with the gain-of-function mutation p.Leu811Pro in SCN11A (encoding for the voltage-gated Nav1.9 channel) exhibit congenital insensitivity to pain, pruritus, self-inflicted injuries, slow healing wounds, muscle weakness, Charcot-like arthropathies, and intestinal dysmotility. As already shown, knock-in mice (Scn11a+/L799P) carrying the orthologous mutation p.Leu799Pro replicate reduced pain sensitivity and show frequent tissue lesions. In the present study we explored whether Scn11a+/L799P mice develop also pruritus, muscle weakness, and changes in gastrointestinal transit time. Furthermore, we analyzed morphological and functional differences in nerves, skeletal muscle, joints and small intestine from Scn11a+/L799P and Scn11a+/+ wild type mice. Compared to Scn11a+/+ mice, Scn11a+/L799P mice showed enhanced scratching bouts before skin lesions developed, indicating pruritus. Scn11a+/L799P mice exhibited reduced grip strength, but no disturbances in motor coordination. Skeletal muscle fiber types and joint architecture were unaltered in Scn11a+/L799P mice. Their gastrointestinal transit time was unaltered. The small intestine from Scn11a+/L799P showed a small shift towards less frequent peristaltic movements. Similar proportions of lumbar dorsal root ganglion neurons from Scn11a+/L799P and Scn11a+/+ mice were calcitonin gene-related peptide (CGRP-) positive, but isolated sciatic nerves from Scn11a+/L799P mice exhibited a significant reduction of the capsaicin-evoked release of CGRP indicating reduced neurogenic inflammation. These data indicate important Nav1.9 channel functions in several organs in both humans and mice. They support the pathophysiological relevance of increased basal activity of Nav1.9 channels for sensory abnormalities (pain and itch) and suggest resulting malfunctions of the motor system and of the gastrointestinal tract. Scn11a+/L799P mice are suitable to investigate the role of Nav1.9, and to explore the pathophysiological changes and mechanisms which develop as a consequence of Nav1.9 hyperactivity.<br />Competing Interests: Matthias Ebbinghaus was funded by Charles River Discovery Research Services Germany GmbH after the experimental part of this study was finished. This does not alter our adherence to PLOS ONE policies on sharing data and materials.
- Subjects :
- Animals
Calcitonin Gene-Related Peptide metabolism
Female
Gastrointestinal Transit
Hand Strength
Intestine, Small metabolism
Intestine, Small pathology
Male
Mice
Mice, Inbred C57BL
Movement
Muscle, Skeletal metabolism
Muscle, Skeletal pathology
NAV1.9 Voltage-Gated Sodium Channel metabolism
Sciatic Nerve metabolism
Sciatic Nerve pathology
Gain of Function Mutation
Muscle Weakness genetics
NAV1.9 Voltage-Gated Sodium Channel genetics
Pruritus genetics
Subjects
Details
- Language :
- English
- ISSN :
- 1932-6203
- Volume :
- 15
- Issue :
- 8
- Database :
- MEDLINE
- Journal :
- PloS one
- Publication Type :
- Academic Journal
- Accession number :
- 32817686
- Full Text :
- https://doi.org/10.1371/journal.pone.0237101