Back to Search
Start Over
Variation in the hemostatic complement (C5a) responses to in vitro nitrogen bubbles in monodontids and phocids.
- Source :
-
Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology [J Comp Physiol B] 2020 Nov; Vol. 190 (6), pp. 811-822. Date of Electronic Publication: 2020 Aug 20. - Publication Year :
- 2020
-
Abstract
- Immune responses to nitrogen gas bubbles, particularly activation of inflammation via the complement cascade, have been linked to the development of symptoms and damage associated with decompression sickness (DCS) in humans. Marine mammals were long thought not to be susceptible to such dive-related injury, yet evidence of DCS-like injury and new models of tissue nitrogen super-saturation suggest that bubbles may routinely form. As such, it is possible that marine mammals have protective adaptations that allow them to deal with a certain level of bubble formation during normal dives, without acute adverse effects. This work evaluated the complement response, indicative of inflammation, to in vitro nitrogen bubble exposures in several marine mammal species to assess whether a less-responsive immune system serves a protective role against DCS-like injury in these animals. Serum samples from beluga (Delphinapterus leucas), and harbor seals (Phoca vitulina) (relatively shallow divers) and deep diving narwhal (Monodon monoceros), and Weddell seals (Leptonychotes weddellii) were exposed to nitrogen bubbles in vitro. Complement activity was evaluated by measuring changes in the terminal protein C5a in serum, and results suggest marine mammal complement is less sensitive to gas bubbles than human complement, but the response varies between species. Species-specific differences may be related to dive ability, and suggest moderate or shallow divers may be more susceptible to DCS-like injury. This information is an important consideration in assessing the impact of changing dive behaviors in response to anthropogenic stressors, startle responses, or changing environmental conditions that affect prey depth distributions.
Details
- Language :
- English
- ISSN :
- 1432-136X
- Volume :
- 190
- Issue :
- 6
- Database :
- MEDLINE
- Journal :
- Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology
- Publication Type :
- Academic Journal
- Accession number :
- 32815023
- Full Text :
- https://doi.org/10.1007/s00360-020-01297-y