Back to Search Start Over

Deuterated stearic acid uptake and accumulation in lipid droplets of cat oocytes.

Authors :
Ranneva SV
Okotrub KA
Amstislavsky SY
Surovtsev NV
Source :
Archives of biochemistry and biophysics [Arch Biochem Biophys] 2020 Oct 15; Vol. 692, pp. 108532. Date of Electronic Publication: 2020 Aug 11.
Publication Year :
2020

Abstract

Fatty acid uptake and accumulation in lipid droplets are essential processes of lipid metabolism. Oocyte in vitro culture in media enriched with fatty acid is used to modify the lipid content and composition, aiming to study the consequences of obesity and enhance cell cryotolerance. We applied Raman spectroscopy and deuterium labeling approach to quantify stearic acid uptake and investigate its incorporation within oocytes. Our data suggest that deuterium labeling does not affect oocyte maturation rates. The efficiency of deuterated stearic acid (dSA) uptake was shown to decrease with the increase of its concentration in culture medium and the duration of in vitro culture. The molar ratio between dSA and bovine serum albumin has no significant effect on the dSA uptake for 200 μM but modifies concentration dependence of the lipid uptake. dSA accumulates in all the lipid droplets inside oocytes. Different lipid droplets within the same oocyte exhibit different concentrations of dSA. The scatter in the dSA concentration in lipid droplets decreases with the culture time. Using dSA as an example, we provide a comprehensive description of how fatty acid concentration, its molar ratio versus bovine serum albumin, and culture time affect the uptake of the fatty acids in oocytes. Raman microspectroscopy of deuterium-labeled fatty acids is a nondestructive tool providing information about fatty acid uptake and heterogeneity of their accumulation between lipid droplets within the single oocyte.<br /> (Copyright © 2020 Elsevier Inc. All rights reserved.)

Details

Language :
English
ISSN :
1096-0384
Volume :
692
Database :
MEDLINE
Journal :
Archives of biochemistry and biophysics
Publication Type :
Academic Journal
Accession number :
32795451
Full Text :
https://doi.org/10.1016/j.abb.2020.108532