Back to Search Start Over

The CARF Protein MM_0565 Affects Transcription of the Casposon-Encoded cas1-solo Gene in Methanosarcina mazei Gö1.

Authors :
Ulbricht A
Nickel L
Weidenbach K
Vargas Gebauer H
Kießling C
Förstner KU
Schmitz RA
Source :
Biomolecules [Biomolecules] 2020 Aug 07; Vol. 10 (8). Date of Electronic Publication: 2020 Aug 07.
Publication Year :
2020

Abstract

Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR) loci are found in bacterial and archaeal genomes where they provide the molecular machinery for acquisition of immunity against foreign DNA. In addition to the cas genes fundamentally required for CRISPR activity, a second class of genes is associated with the CRISPR loci, of which many have no reported function in CRISPR-mediated immunity. Here, we characterize MM_0565 associated to the type I-B CRISPR-locus of Methanosarcina mazei Gö1. We show that purified MM_0565 composed of a CRISPR-Cas Associated Rossmann Fold (CARF) and a winged helix-turn-helix domain forms a dimer in solution; in vivo, the dimeric MM_0565 is strongly stabilized under high salt stress. While direct effects on CRISPR-Cas transcription were not detected by genetic approaches, specific binding of MM_0565 to the leader region of both CRISPR-Cas systems was observed by microscale thermophoresis and electromobility shift assays. Moreover, overexpression of MM_0565 strongly induced transcription of the cas1-solo gene located in the recently reported casposon, the gene product of which shows high similarity to classical Cas1 proteins. Based on our findings, and taking the absence of the expressed CRISPR locus-encoded Cas1 protein into account, we hypothesize that MM_0565 might modulate the activity of the CRISPR systems on different levels.

Details

Language :
English
ISSN :
2218-273X
Volume :
10
Issue :
8
Database :
MEDLINE
Journal :
Biomolecules
Publication Type :
Academic Journal
Accession number :
32784796
Full Text :
https://doi.org/10.3390/biom10081161