Back to Search
Start Over
Experimental Pretreatment with Chlorogenic Acid Prevents Transient Ischemia-Induced Cognitive Decline and Neuronal Damage in the Hippocampus through Anti-Oxidative and Anti-Inflammatory Effects.
- Source :
-
Molecules (Basel, Switzerland) [Molecules] 2020 Aug 06; Vol. 25 (16). Date of Electronic Publication: 2020 Aug 06. - Publication Year :
- 2020
-
Abstract
- Chlorogenic acid (CGA), an ester of caffeic acid and quinic acid, is among the phenolic acid compounds which can be naturally found in green coffee extract and tea. CGA has been studied since it displays significant pharmacological properties. The aim of this study was to investigate the effects of CGA on cognitive function and neuroprotection including its mechanisms in the hippocampus following transient forebrain ischemia in gerbils. Memory and learning following the ischemia was investigated by eight-arm radial maze and passive avoidance tests. Neuroprotection was examined by immunohistochemistry for neuronal nuclei-specific protein and Fluoro-Jade B histofluorescence staining. For mechanisms of the neuroprotection, alterations in copper, zinc-superoxide dismutase (SOD1), SOD2 as antioxidant enzymes, dihydroethidium and 4-hydroxy-2-nonenal as indicators for oxidative stress, and anti-inflammatory cytokines (interleukin (IL)-4 and IL-13) and pro-inflammatory cytokines (tumor necrosis factor α (TNF-α) and IL-2) were examined by Western blotting and/or immunohistochemistry. As a result, pretreatment with 30 mg/kg CGA attenuated cognitive impairment and displayed a neuroprotective effect against transient forebrain ischemia (TFI). In Western blotting, the expression levels of SOD2 and IL-4 were increased due to pretreatment with CGA and, furthermore, 4-HNE production and IL-4 expressions were inhibited by CGA pretreatment. Additionally, pretreated CGA enhanced antioxidant enzymes and anti-inflammatory cytokines and, in contrast, attenuated oxidative stress and pro-inflammatory cytokine expression. Based on these results, we suggest that CGA can be a useful neuroprotective material against ischemia-reperfusion injury due to its antioxidant and anti-inflammatory efficacies.
- Subjects :
- Aldehydes metabolism
Animals
Anti-Inflammatory Agents pharmacology
Antioxidants pharmacology
Hippocampus drug effects
Interleukin-2 metabolism
Interleukin-4 metabolism
Ischemia metabolism
Mice
Neuroprotective Agents pharmacology
Superoxide Dismutase metabolism
Chlorogenic Acid pharmacology
Cognition drug effects
Hippocampus pathology
Ischemia pathology
Ischemia physiopathology
Neurons drug effects
Neurons pathology
Subjects
Details
- Language :
- English
- ISSN :
- 1420-3049
- Volume :
- 25
- Issue :
- 16
- Database :
- MEDLINE
- Journal :
- Molecules (Basel, Switzerland)
- Publication Type :
- Academic Journal
- Accession number :
- 32781658
- Full Text :
- https://doi.org/10.3390/molecules25163578