Back to Search Start Over

Structural and functional evaluation of de novo-designed, two-component nanoparticle carriers for HIV Env trimer immunogens.

Authors :
Antanasijevic A
Ueda G
Brouwer PJM
Copps J
Huang D
Allen JD
Cottrell CA
Yasmeen A
Sewall LM
Bontjer I
Ketas TJ
Turner HL
Berndsen ZT
Montefiori DC
Klasse PJ
Crispin M
Nemazee D
Moore JP
Sanders RW
King NP
Baker D
Ward AB
Source :
PLoS pathogens [PLoS Pathog] 2020 Aug 11; Vol. 16 (8), pp. e1008665. Date of Electronic Publication: 2020 Aug 11 (Print Publication: 2020).
Publication Year :
2020

Abstract

Two-component, self-assembling nanoparticles represent a versatile platform for multivalent presentation of viral antigens. Computational design of protein nanoparticles with differing sizes and geometries enables combination with antigens of choice to test novel multimerization concepts in immunization strategies where the goal is to improve the induction and maturation of neutralizing antibody lineages. Here, we describe detailed antigenic, structural, and functional characterization of computationally designed tetrahedral, octahedral, and icosahedral nanoparticle immunogens displaying trimeric HIV envelope glycoprotein (Env) ectodomains. Env trimers, based on subtype A (BG505) or consensus group M (ConM) sequences and engineered with SOSIP stabilizing mutations, were fused to an underlying trimeric building block of each nanoparticle. Initial screening yielded one icosahedral and two tetrahedral nanoparticle candidates, capable of presenting twenty or four copies of the Env trimer. A number of analyses, including detailed structural characterization by cryo-EM, demonstrated that the nanoparticle immunogens possessed the intended structural and antigenic properties. When the immunogenicity of ConM-SOSIP trimers presented on a two-component tetrahedral nanoparticle or as soluble proteins were compared in rabbits, the two immunogens elicited similar serum antibody binding titers against the trimer component. Neutralizing antibody titers were slightly elevated in the animals given the nanoparticle immunogen and were initially more focused to the trimer apex. Altogether, our findings indicate that tetrahedral nanoparticles can be successfully applied for presentation of HIV Env trimer immunogens; however, the optimal implementation to different immunization strategies remains to be determined.<br />Competing Interests: The authors have declared that no competing interests exist.

Details

Language :
English
ISSN :
1553-7374
Volume :
16
Issue :
8
Database :
MEDLINE
Journal :
PLoS pathogens
Publication Type :
Academic Journal
Accession number :
32780770
Full Text :
https://doi.org/10.1371/journal.ppat.1008665