Back to Search Start Over

RPW8.1 enhances the ethylene-signaling pathway to feedback-attenuate its mediated cell death and disease resistance in Arabidopsis.

Authors :
Zhao ZX
Feng Q
Liu PQ
He XR
Zhao JH
Xu YJ
Zhang LL
Huang YY
Zhao JQ
Fan J
Li Y
Xiao S
Wang WM
Source :
The New phytologist [New Phytol] 2021 Jan; Vol. 229 (1), pp. 516-531. Date of Electronic Publication: 2020 Sep 05.
Publication Year :
2021

Abstract

The Arabidopsis RESISTANCE TO POWDERY MILDEW 8.1 (RPW8.1) activates confined cell death and defense against different pathogens. However, the underlying regulatory mechanisms still remain elusive. Here, we show that RPW8.1 activates ethylene signaling that, in turn, negatively regulates RPW8.1 expression. RPW8.1 binds and stabilizes 1-aminocyclopropane-1-carboxylate oxidase 4 (ACO4), which may in part explain increased ethylene production and signaling in RPW8.1-expressing plants. In return, ACO4 and other key components of ethylene signaling negatively regulate RPW8.1-mediated cell death and disease resistance via suppressing RPW8.1 expression. Loss of function in ACO4, EIN2, EIN3 EIL1, ERF6, ERF016 or ORA59 increases RPW8.1-mediated cell death and defense response. By contrast, overexpression of EIN3 abolishes or significantly compromises RPW8.1-mediated cell death and disease resistance. Furthermore, ERF6, ERF016 and ORA59 appear to act as trans-repressors of RPW8.1, with OAR59 being able to directly bind to the RPW8.1 promoter. Taken together, our results have revealed a feedback regulatory circuit connecting RPW8.1 and the ethylene-signaling pathway, in which RPW8.1 enhances ethylene signaling, and the latter, in return, negatively regulates RPW8.1-mediated cell death and defense response via suppressing RPW8.1 expression to attenuate its defense activity.<br /> (© 2020 The Authors New Phytologist © 2020 New Phytologist Trust.)

Details

Language :
English
ISSN :
1469-8137
Volume :
229
Issue :
1
Database :
MEDLINE
Journal :
The New phytologist
Publication Type :
Academic Journal
Accession number :
32767839
Full Text :
https://doi.org/10.1111/nph.16857