Back to Search Start Over

Nanoparticle-Encapsulated Liushenwan Could Treat Nanodiethylnitrosamine-Induced Liver Cancer in Mice by Interfering With Multiple Critical Factors for the Tumor Microenvironment.

Authors :
Hong J
Chen XZ
Peng YG
Zhang WK
Tang HB
Li YS
Source :
Frontiers in pharmacology [Front Pharmacol] 2020 Jul 10; Vol. 11, pp. 1052. Date of Electronic Publication: 2020 Jul 10 (Print Publication: 2020).
Publication Year :
2020

Abstract

We previously isolated an ethanol fraction of LSW (Liushenwan pill, a traditional Chinese medicine) which has been shown to prevent and treat liver cancer induced by nanodiethylnitrosamine (nanoDEN) in mice. In the present study, we utilized a high-pressure microfluidics technique to generate LSW lipid nanoparticles (nano-LSW) to reduce its toxicity, and enhance its inhibitory effect on tumor growth, and further evaluate its therapeutic effect using a nanoDEN-induced mouse model of liver cancer. Our in vitro results indicated that nano-LSW-low could induce apoptosis in HepG2 cells, but exhibited low toxicity in L02 cells. Furthermore, the in vivo results indicated that nano-LSW-low exerted minimal or no damage to normal hepatocytes, kidney, and small intestine tissues. In addition, our results showed that at the 20 <superscript>th</superscript> week, the inflammatory infiltration in the mice in the model group increased severely, and partial pimelosis and fibrosis occurred. In contrast, the liver tissues in the mice treated with nano-LSW exhibited only slight inflammatory infiltration, without pimelosis and fibrosis. At the 30 <superscript>th</superscript> week, 4 out of 5 liver tissues in the model group showed hyperplastic nodules by hematoxylin and eosin (H&E) staining. However, the liver tissues in the nano-LSW treatment group did not showed hyperplastic nodules. Immunohistochemical staining showed that, in contrast to the model group, the levels of COX-2, PCNA, β-catenin, and HMGB1 protein expressions were significantly lower in the nano-LSW-low group at the 20 <superscript>th</superscript> and 30 <superscript>th</superscript> week. Compared to model group, the COX-2 , TNF-α , Smad-2 , and TGF-β1 mRNA levels obviously decreased in the liver tissue after the nano-LSW-low treatment. Taken together, nano-LSW-low may serve as a potent therapeutic agent for preventing liver cancer by interfering with multiple critical factors for the tumor microenvironment during oncogenesis.<br /> (Copyright © 2020 Hong, Chen, Peng, Zhang, Tang and Li.)

Details

Language :
English
ISSN :
1663-9812
Volume :
11
Database :
MEDLINE
Journal :
Frontiers in pharmacology
Publication Type :
Academic Journal
Accession number :
32754037
Full Text :
https://doi.org/10.3389/fphar.2020.01052