Back to Search
Start Over
Addressing practical issues of predictive models translation into everyday practice and public health management: a combined model to predict the risk of type 2 diabetes improves incidence prediction and reduces the prevalence of missing risk predictions.
- Source :
-
BMJ open diabetes research & care [BMJ Open Diabetes Res Care] 2020 Jul; Vol. 8 (1). - Publication Year :
- 2020
-
Abstract
- Introduction: Many predictive models for incident type 2 diabetes (T2D) exist, but these models are not used frequently for public health management. Barriers to their application include (1) the problem of model choice (some models are applicable only to certain ethnic groups), (2) missing input variables, and (3) the lack of calibration. While (1) and (2) drives to missing predictions, (3) causes inaccurate incidence predictions. In this paper, a combined T2D risk model for public health management that addresses these three issues is developed.<br />Research Design and Methods: The combined T2D risk model combines eight existing predictive models by weighted average to overcome the problem of missing incidence predictions. Moreover, the combined model implements a simple recalibration strategy in which the risk scores are rescaled based on the T2D incidence in the target population. The performance of the combined model was compared with that of the eight existing models using data from two test datasets extracted from the Multi-Ethnic Study of Atherosclerosis (MESA; n=1031) and the English Longitudinal Study of Ageing (ELSA; n=4820). Metrics of discrimination, calibration, and missing incidence predictions were used for the assessment.<br />Results: The combined T2D model performed well in terms of both discrimination (concordance index: 0.83 on MESA; 0.77 on ELSA) and calibration (expected to observed event ratio: 1.00 on MESA; 1.17 on ELSA), similarly to the best-performing existing models. However, while the existing models yielded a large percentage of missing predictions (17%-45% on MESA; 63%-64% on ELSA), this was negligible with the combined model (0% on MESA, 4% on ELSA).<br />Conclusions: Leveraging on existing literature T2D predictive models, a simple approach based on risk score rescaling and averaging was shown to provide accurate and robust incidence predictions, overcoming the problem of recalibration and missing predictions in practical application of predictive models.<br />Competing Interests: Competing interests: None declared.<br /> (© Author(s) (or their employer(s)) 2020. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.)
Details
- Language :
- English
- ISSN :
- 2052-4897
- Volume :
- 8
- Issue :
- 1
- Database :
- MEDLINE
- Journal :
- BMJ open diabetes research & care
- Publication Type :
- Academic Journal
- Accession number :
- 32747386
- Full Text :
- https://doi.org/10.1136/bmjdrc-2020-001223