Back to Search Start Over

Antimicrobial Resistance at Two U.S. Cull Cow Processing Establishments.

Authors :
Schmidt JW
Vikram A
Arthur TM
Belk KE
Morley PS
Weinroth MD
Wheeler TL
Source :
Journal of food protection [J Food Prot] 2020 Dec 01; Vol. 83 (12), pp. 2216-2228.
Publication Year :
2020

Abstract

Abstract: Culled beef cows (cows that have reached the end of their productive life span in cow-calf operations) and culled dairy cows represent approximately 18% of the cattle harvested in the United States annually, but data on antimicrobial resistance (AMR) in these cull cattle are extremely limited. To address this data gap, colon contents were obtained from 180 culled conventional beef cows, 179 culled conventional dairy cows, and 176 culled organic dairy cows (produced without using antimicrobials). Sponge samples were also collected from 181 conventional beef, 173 conventional dairy, and 180 organic dairy cow carcasses. These samples were obtained on 6 days (3 days each at two beef harvest and processing establishments). At one establishment, 30 samples of beef manufacturing trimmings from conventional cows and 30 trim samples from organic dairy cows were acquired. All 1,129 samples were cultured for Escherichia coli, tetracycline-resistant (TETr) E. coli, third-generation cephalosporin-resistant (3GCr) E. coli, Salmonella, and 3GCrSalmonella. Metagenomic DNA was isolated from 535 colon content samples, and quantitative PCR assays were performed to assess the abundances of the following 10 antimicrobial resistance genes: aac(6')-Ie-aph(2″)-Ia, aadA1, blaCMY-2, blaCTX-M, blaKPC-2, erm(B), mecA, tet(A), tet(B), and tet(M). For colon contents, only TETrE. coli (P < 0.01), 3GCrE. coli (P < 0.01), and erm(B) (P = 0.03) levels were higher in conventional than in organic cows. Sampling day also significantly affected (P < 0.01) these levels. Production system did not affect the levels of any measured AMR on carcasses or trim. The human health impact of the few significant AMR differences could not be determined due to the lack of standards for normal, background, safe, or basal values. Study results provide key heretofore unavailable data that may inform quantitative microbial risk assessments to address these gaps.<br /> (Published 2020 by the International Association for Food Protection. Not subject to U.S. Copyright.)

Details

Language :
English
ISSN :
1944-9097
Volume :
83
Issue :
12
Database :
MEDLINE
Journal :
Journal of food protection
Publication Type :
Academic Journal
Accession number :
32730612
Full Text :
https://doi.org/10.4315/JFP-20-201