Back to Search Start Over

Viscosity of ASDs at humid conditions.

Authors :
Wolbert F
Stecker J
Luebbert C
Sadowski G
Source :
European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V [Eur J Pharm Biopharm] 2020 Sep; Vol. 154, pp. 387-396. Date of Electronic Publication: 2020 Jul 25.
Publication Year :
2020

Abstract

Many amorphous solid dispersions (ASDs) are thermodynamically unstable. Thus, the active pharmaceutical ingredient (API) might crystallize over time. The crystallization kinetics and therewith the long-term stability of ASDs depends on the storage conditions temperature and relative humidity (RH) as they determine the molecular mobility of the API in the polymer. To quantify the molecular mobility, the rheological behavior of two different ASDs with ibuprofen and either poly(vinyl acetate) or poly(vinylpyrrolidone-co-vinyl acetate) was analyzed as function of temperature and relative humidity by means of an oscillatory rheometer. The plasticizing effect of ibuprofen and absorbed water on the zero-shear viscosity of the polymer could be fully explained by the reduction of the glass-transition temperature of the mixture compared to the one of the pure polymer. Moreover, this work proposes an approach to predict the zero-shear viscosity of an ASD based on only the temperature dependence of the zero-shear viscosity of the pure polymer as well as the predicted water content in the ASD at certain RH using the Perturbed-Chain Statistical Associating Fluid Theory (PC-SAFT).<br />Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2020 Elsevier B.V. All rights reserved.)

Details

Language :
English
ISSN :
1873-3441
Volume :
154
Database :
MEDLINE
Journal :
European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V
Publication Type :
Academic Journal
Accession number :
32717391
Full Text :
https://doi.org/10.1016/j.ejpb.2020.07.024